Gelatinases are overexpressed in several types of maligancies and tumor stromal cells. Lidamycin is an enediyne antitumor antibiotic, which is composed of an apoprotein (LDP) and an active chromophore (AE). It is known that the heavy-chain complementarity-determining region-3 (CDR3) domain of scFv is important in antibody affinity. The aim of this study was to prepare the enediyne-energized fusion proteins with a heavy-chain CDR3 domain of anti-gelatinases scFv and lidamycin, and to evaluate their antitumor efficiency. Fusion proteins comprising the CDR3 domain and the lidamycin apoprotein were generated, and ELISA, immunofluorescence and FACS were used to analyze the binding of the fusion protein with antigen gelatinases. The purified fusion proteins were assembled with the lidamycin chromophore, and the antitumor effects were evaluated and . It was found that the CDR3-LDP and CDR3-LDP-CDR3 fusion proteins demonstrated high affinity towards antigen gelatinases. Following stimulation of CDR3-LDP with enediyne, the results of MTT showed potent cytotoxicity towards tumor cells; the IC50 values of CDR3-LDP-AE to HepG2 and Bel-7402 tumor cells were 1.05×10 and 6.6×10 M, respectively. In addition, CDR3-LDP-AE displayed a potent antitumor effect in H22 cell xenografts in mice; the combination of CDR3-LDP (10 mg/kg) and CDR3-LDP-AE (0.25 and 0.5 mg/kg) revealed that the tumor inhibitory rates were 85.2 and 92.7%, respectively (P<0.05 compared with CDR3-LDP-AE). In conclusion, these results suggest that the CDR3-LDP fusion protein and its analog CDR3-LDP-AE may both be promising candidates for tumor targeting therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629231PMC
http://dx.doi.org/10.3892/ol.2013.1143DOI Listing

Publication Analysis

Top Keywords

fusion proteins
20
cdr3 domain
12
antigen gelatinases
8
tumor cells
8
fusion
6
proteins
5
lidamycin
5
tumor
5
small antibody
4
antibody fusion
4

Similar Publications

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Alectinib treatment for 2 non-small cell lung carcinoma patients carrying different novel fusions.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Pathology, Second Xiangya Hospital, Central South University, Changsha 410011.

The genomic fusions of the anaplastic lymphoma kinase () gene have been widely recognized as effective therapeutic targets for non-small cell lung carcinoma (NSCLC). The Second Xiangya Hospital of Central South University has treated 2 NSCLC patients with 2 distinct novel gene fusions. Case 1 was a 55-year-old male with a solid nodule located in the right hilar lobe on enhanced CT scan.

View Article and Find Full Text PDF

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

Yeast Dnm1 causes altered organelle dynamics and sheds light on the human DRP1 disease mechanism.

Mitochondrion

January 2025

Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:

Mitochondrial morphology is a result of regulated opposite events called fission and fusion and requires the GTPase, dynamin-related protein 1 (DRP1/Dnm1), or its homologs. A recent clinical report identified a heterozygous missense mutation in the human DRP1 that replaces Glycine (G) 149 with Arginine (R) and results in debilitating conditions in the patient. In this study, we mimicked this mutation in yeast Dnm1 (G178R) and investigated the impact of the pathogenic mutation on the protein's function.

View Article and Find Full Text PDF

De novo biosynthesis of mogroside V by multiplexed engineered yeasts.

Metab Eng

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China. Electronic address:

High sugar intake has become a global health concern due to its association with various diseases. Mogroside V (MG-V), a zero-calorie sweetener with multiple medical properties, is emerging as a promising sugar substitute. However, its application is hindered by low natural abundance and the inefficiency of conventional plant extraction methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!