Download full-text PDF

Source
http://dx.doi.org/10.1126/science.340.6130.272-aDOI Listing

Publication Analysis

Top Keywords

drought china's
4
china's cave
4
cave species
4
drought
1
cave
1
species
1

Similar Publications

Higher PEPC activity and vein density contribute to improve cotton leaf water use efficiency under water stress.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

Plants with the C photosynthetic pathway can withstand water stress better than plants with C metabolism. However, it is unclear whether C photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L.

View Article and Find Full Text PDF

Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.

Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.

View Article and Find Full Text PDF

In the context of global climate change, exploring how plant adaptation and responses to drought vary among different regions are crucial to understanding and predicting its geographic distribution. In this study, to explore the drought adaptation and responses of the dominant species in the semi-arid Eurasian Steppes and their differences among the different regions in terms of growth, physiology, and RNA-seq transcriptome, was chosen as the study material, and a seed source (three regions: eastern, middle, and western regions) × soil moisture treatment (three treatments: control, light drought, and heavy drought) two-factor experiment was conducted. (1) Four growth traits for individuals from the western region were significantly lower than those from the other two regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!