Living nature can be thought of as a tapestry, defined not only by its constituent parts but also by how these parts are woven together. The weaving of this tapestry is a metaphor for species interactions, which can be divided into three broad classes: competitive, mutualistic, and consumptive. Direct interactions link together as more complex networks, for example, the joining of consumptive interactions into food webs. Food web dynamics are driven, in turn, by changes in the abundances of web members, whose numbers or biomass respond to bottom-up (resource limitation) and top-down (consumer limitation) forcing. The relative strengths of top-down and bottom-up forcing on the abundance of a given web member depend on its ecological context, including its topological position within the food web. Top-down effects by diverse consumers are nearly ubiquitous, in many cases influencing the structure and operation of ecosystems. While the ecological effects of such interactions are well known, far less is known of their evolutionary consequences. In this essay, we describe sundry consequences of these interaction chains on species and ecosystem processes, explain several known or suspected evolutionary effects of consumer-induced interaction chains, and identify areas where reciprocity between ecology and evolution involving the indirect effects of consumer-prey interaction chains might be further explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/668120 | DOI Listing |
Nat Commun
January 2025
Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S.
View Article and Find Full Text PDFBioresour Technol
January 2025
CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
This work investigates the optimization of medium-chain carboxylate (MCC) production through xylan mixed-culture monofermentation. The pH screening in batch assays showed that the hydrolysis stage and selectivity towards MCC precursors were optimised at pH 6. Subsequently, a continuous stirred tank reactor (CSTR) and a Sequential Batch Reactor (SBR) were operated at different Hydraulic Retention Times (HRT), revealing that the SBR at HRT 2 days yielded the highest caproic acid since lactic acid availability and chain elongation process were balanced.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, PR China; Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, PR China; Key Laloratory of Molecular Pathology in Tumors of Guangxi, Baise 533000, Guangxi, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden. Electronic address:
A comprehensive investigation into the mechanism of VEGFR1 protein in this process was undertaken. Lentivirus-mediated RNA interference was employed to inhibit the expression of LINC00511 in breast cancer cell lines, and changes in breast cancer stem cell markers, including CD44+/CD24-, were monitored using flow cytometry. Additionally, the interaction between VEGFR1 protein and LINC00511 and the activation of its downstream signaling pathway were investigated through co-immunoprecipitation (Co-IP) and Western blot techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!