The pH-dependent interaction of silver nanoparticles and hydrogen peroxide: a new platform for visual detection of iodide with ultra-sensitivity.

Talanta

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.

Published: March 2013

Considering the significance and urgency for the recognition and sensing of anions specifically, especially those of biological relevance, herein, a simple and reliable colorimetric iodide sensor that based on pH-dependent interaction of silver nanoparticles (AgNPs) and H2O2 was developed. In acidic medium, AgNPs reacted with H2O2 to produce Ag(+) and powerful oxidizing species. The powerful oxidizing species could etch AgNPs seriously. While, iodide acted as an antioxidant could protect AgNPs from oxidation-etching by the powerful oxidizing species. In neutral and alkaline medium, the reaction of AgNPs and H2O2 mainly produce Ag(+). The existence of iodide could complex with Ag(+), forming AgI, which paved the way for aggregation of AgNPs. Based on the different responses of iodide to these different products of the reaction between H2O2 and AgNPs in solutions with different pH, iodide with concentrations down to 1 nM in acidic medium, 6 nM in neutral medium, and 100 nM in alkaline medium could be detected by naked-eye. More importantly, urinary iodide had been detected successfully. This simple and speedy method, which also exhibited remarkable selectivity and outstanding sensitivity, not only innovated the field of iodide recognition but also opened up a novel insight of the application of AgNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2012.12.029DOI Listing

Publication Analysis

Top Keywords

powerful oxidizing
12
oxidizing species
12
ph-dependent interaction
8
interaction silver
8
silver nanoparticles
8
iodide
8
agnps
8
agnps h2o2
8
acidic medium
8
h2o2 produce
8

Similar Publications

Several microRNAs (miRNAs) emerged as powerful regulators of fibrotic processes, "fibromiRs", and can also influence the expression of genes responsible for the generation of reactive oxygen species, "redoximiRs". We aimed to investigate whether plasma exosomes from hypertensive and diabetes patients are enriched in fibromiRs and redoximiRs using deep sequencing technology and their association with relevant signalling pathways implicated in oxidative stress and fibrogenesis by GO terms and KEGG pathways. RNA-Seq analysis from P-EXO identified 31 differentially expressed (DE) miRNAs in patients compared to controls, of which 77% are biofluid specific.

View Article and Find Full Text PDF

Hybridization Design and High-Throughput Screening of Peptides with Immunomodulatory and Antioxidant Activities.

Int J Mol Sci

January 2025

Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

With the increasing recognition of the role of immunomodulation and oxidative stress in various diseases, designing peptides with both immunomodulatory and antioxidant activities has emerged as a promising therapeutic strategy. In this study, a hybridization design was applied as a powerful method to obtain multifunctional peptides. A total of 40 peptides with potential immunomodulatory and antioxidant activities were designed and screened.

View Article and Find Full Text PDF

(1) Background: The RoXsta system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXsta system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides.

View Article and Find Full Text PDF

Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function.

View Article and Find Full Text PDF

Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!