Gene targeting is a powerful approach in reverse genetics. The approach has been hampered in most of human cell lines, however, by the poor targeting efficiency. Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, exhibits exceptionally high gene targeting efficiency and is used in DNA repair and the related research fields. Nonetheless, usage of the cell line is still limited partly because it lacks expression of MSH2, a component of mismatch repair complex, which leads to increased genome instability. Here, we report successful restoration of MSH2 expression in Nalm-6 cells and demonstrate that the recovery does not affect the high targeting efficiency. We recovered the expression by introduction of cDNA sequences corresponding to exons 9 to 16 at downstream of exon 8 of the MSH2 gene. Endogenous exons 9 to 16 were deleted in the cell line. The MSH2 expression substantially reduced spontaneous HPRT mutation frequency. Moreover, gene targeting efficiency in the MSH2-expressing cells was similar to that in the MSH2-lacking cells. In fact, we generated heterozygously REV3L knockout and the catalytically dead mutants in the MSH2-proficient Nalm-6 cells with efficiency of 20-30%. The established cell line, Nalm-6-MSH+, is useful for reverse genetics in human cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626652 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061189 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!