Inhibition of choroidal neovascularization by anti-EphB4 monoclonal antibody.

Exp Ther Med

Department of Ophthalmology, 463rd Hospital of Chinese People's Liberation Army, Shenyang 110042; ; Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004;

Published: April 2013

The aim of this study was to determine the effect of the EphB4 monoclonal antibody on experimental choroidal neovascularization (CNV) progression. Experimental CNV was established by argon laser photocoagulation. In the experimental group, the EphB4 monoclonal antibody was injected into the vitreous space in the eye specimens on days 0, 3, 6 and 9 after CNV model establishment. In the control group, an equal amount of balanced salt solution was injected at the same time points. On day 10 after CNV model establishment, fluorescein isothiocyanate-dextran endocardial perfusion and choroidal stretched preparation were conducted, respectively, for the two groups. The CNV area in each light spot and the mean values were determined. Histopathological examination was conducted and the ratio of the maximum thickness of the CNV in each light spot to the surrounding normal choroidal thickness, as well as the mean ratio, were calculated. Choroidal stretched preparation confirmed that the CNV of the experimental group was smaller, whereas the CNV of the control group was wider and larger. Quantitative analysis revealed that CNV in the experimental group was significantly inhibited (t=11.84, P<0.01) and that CNV progression in the experimental group was significantly suppressed (t=7.45, P<0.01). Histopathological examination revealed that CNV in the experimental group was thinner and smaller. Vitreous injection of the EphB4 monoclonal antibody inhibits experimental CNV progression. However, its specific mechanism remains unclear. Endogenous EphrinB2/EphB4 regulates ocular neovascularization and may become a new target in treating CNV diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628074PMC
http://dx.doi.org/10.3892/etm.2013.962DOI Listing

Publication Analysis

Top Keywords

monoclonal antibody
12
experimental group
12
cnv
9
choroidal neovascularization
8
ephb4 monoclonal
8
cnv model
8
model establishment
8
control group
8
choroidal stretched
8
stretched preparation
8

Similar Publications

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol

January 2025

Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.

View Article and Find Full Text PDF

Introduction: Immune-related adverse events (irAEs) induced by immune checkpoint inhibitors are difficult to predict and can lead to severe events. Although it is important to develop strategies for the early detection of severe irAEs, there is a lack of evidence on irAEs associated with ipilimumab plus nivolumab therapy for metastatic renal cell carcinoma (RCC). Therefore, this study aimed to investigate the association between eosinophil and severe irAEs in patients receiving ipilimumab plus nivolumab therapy for RCC.

View Article and Find Full Text PDF

Claudin 18.2: An attractive marker in pancreatic ductal adenocarcinoma.

Oncol Lett

March 2025

Department of Pathology, National Institute of Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, Castellana Grotte, I-70013 Bari, Italy.

Pancreatic ductal adenocarcinoma (PDA) is a highly aggressive tumor with limited treatment options. Zolbetuximab, a monoclonal antibody against the tight junction protein Claudin 18.2 has recently been developed.

View Article and Find Full Text PDF

Successful treatment of severe acrodermatitis continua of hallopeau with Bimekizumab: A case report.

SAGE Open Med Case Rep

January 2025

Faculty of Medicine, Division of Dermatology, University of Ottawa, Ottawa, ON, Canada.

Acrodermatitis continua of Hallopeau is a rare form of pustular psoriasis affecting the acral fingers and toes, characterized by recurrent eruptions of sterile pustules that lead to significant pain and potentially irreversible destruction of the nail apparatus. Symptoms are often refractory to topical and systemic therapies for psoriasis. This case report presents a healthy 23-year-old female with severe acrodermatitis continua of Hallopeau, destructing all 10 fingernails.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!