Nitrile reductase QueF catalyzes the reduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ0) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ1) in the biosynthetic pathway of the hypermodified nucleoside queuosine. It is the only enzyme known to catalyze a reduction of a nitrile to its corresponding primary amine and could therefore expand the toolbox of biocatalytic reactions of nitriles. To evaluate this new oxidoreductase for application in biocatalytic reactions, investigation of its substrate scope is prerequisite. We report here an investigation of the active site binding properties and the substrate scope of nitrile reductase QueF from Escherichia coli. Screenings with simple nitrile structures revealed high substrate specificity. Consequently, binding interactions of the substrate to the active site were identified based on a new homology model of E. coli QueF and modeled complex structures of the natural and non-natural substrates. Various structural analogues of the natural substrate preQ0 were synthesized and screened with wild-type QueF from E. coli and several active site mutants. Two amino acid residues Cys190 and Asp197 were shown to play an essential role in the catalytic mechanism. Three non-natural substrates were identified and compared to the natural substrate regarding their specific activities by using wild-type and mutant nitrile reductase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201300163DOI Listing

Publication Analysis

Top Keywords

nitrile reductase
16
reductase quef
12
active site
12
biocatalytic reactions
8
substrate scope
8
non-natural substrates
8
natural substrate
8
substrate
7
nitrile
6
quef
5

Similar Publications

Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor.

Physiol Plant

January 2025

Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.

Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).

View Article and Find Full Text PDF

Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options.

View Article and Find Full Text PDF

Long term effects of aromatase inhibitor treatment in patients with aromatase excess syndrome.

Front Endocrinol (Lausanne)

December 2024

Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.

Article Synopsis
  • Aromatase excess syndrome (AEXS) is a rare genetic disorder that leads to excessive conversion of androgens to estrogens, causing issues like gynecomastia and delayed puberty in males, and fewer cases reported in females.
  • A family study revealed that all four members with AEXS shared a specific genetic deletion, and the long-term use of aromatase inhibitors like letrozole improved symptoms such as accelerated growth and gynecomastia.
  • Treatment outcomes varied among family members: significant gains in adult height and reduction of gynecomastia were noted in the male patients, while the female sibling experienced normal puberty development and growth with a combination of therapies.*
View Article and Find Full Text PDF

Mosquitoes within the complex play a crucial role in human disease transmission. Insecticides, especially pyrethroids, are used to control these vectors. Mosquito legs are the main entry point and barrier for insecticides to gain their neuronal targets.

View Article and Find Full Text PDF

Committed to our growing effort addressed toward the development of potent anti-breast cancer candidates, new 4-hydrazinylpyrimidine-5-carbonitriles featuring a morpholinyl or piperidinyl moiety at the position-2 and derivatized with various functionalities at the hydrazinyl group were designed through structure optimization, and their antiproliferative potency against two human breast cancer (BC) cell lines, relative to the reference drug 5-FU, was evaluated. Compounds showing remarkable cytotoxic activity versus the hormone dependent MCF-7 cell line (IC = 1.62 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!