Čerenkov excited fluorescence tomography using external beam radiation.

Opt Lett

Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA.

Published: April 2013

Radiation treatment of cancer induces an optical Čerenkov emission throughout the treated volume, which could be used to excite molecular reporters in vivo, allowing molecular sensing of tissue response during fractionated therapy. In this Letter, the idea that spatial mapping of this signal can be achieved with tomographic recovery of the fluorophore distribution is tested for the first time using 6 MV photons from a linear accelerator in a heterogeneous tissue phantom. Čerenkov light excited fluorophores throughout the tissue phantom, and diffuse tomography was used to recover images. Measurements from 13 locations were used, with spectrometer detection and spectral fitting, to separate the fluorophore emission from the Čerenkov continuum. Fluorescent diffuse tomographic images showed a linear response between the concentration and the reconstructed values. The potential to apply this molecular imaging in treatment with molecular reporters appears promising.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129509PMC
http://dx.doi.org/10.1364/OL.38.001364DOI Listing

Publication Analysis

Top Keywords

molecular reporters
8
tissue phantom
8
Čerenkov
4
Čerenkov excited
4
excited fluorescence
4
fluorescence tomography
4
tomography external
4
external beam
4
beam radiation
4
radiation radiation
4

Similar Publications

γδ T cells producing either interleukin-17A (γδ cells) or interferon-γ (γδ cells) are generated in the mouse thymus, but the molecular regulators of their peripheral functions are not fully characterized. Here we established an Il17a-GFP:Ifng-YFP double-reporter mouse strain to analyze at unprecedented depth the transcriptomes of pure γδ cell versus γδ cell populations from peripheral lymph nodes. Within a very high fraction of differentially expressed genes, we identify a panel of 20 new signature genes in steady-state γδ cells versus γδ cells, which we further validate in models of experimental autoimmune encephalomyelitis and cerebral malaria, respectively.

View Article and Find Full Text PDF

Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.

View Article and Find Full Text PDF

Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay.

View Article and Find Full Text PDF

Hsa_circ_0000105 promotes nasopharyngeal carcinoma malignancy by miR-541-3p/S100A11 axis.

Clinics (Sao Paulo)

January 2025

Department of Clinical Oncology Center, Radiotherapy Ward 3, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi Zhuang Autonomous Region, China.

Objective: This study was to investigate whether hsa_circ_0000105 is involved in the process of regulating Nasopharyngeal Carcinoma (NPC) biological behaviors and to reveal the molecular mechanism.

Methods: NPC tissues and normal tissues were collected, and NPC cell lines and normal control cell lines were obtained. hsa_circ_0000105/miR-541-3p/S100A11 was evaluated by RT-qPCR or Western blot.

View Article and Find Full Text PDF

PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges.

J Med Chem

January 2025

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States.

Article Synopsis
  • Gene therapy and cell transduction are emerging as promising treatments for neurological and psychiatric disorders, with PET imaging playing a key role in assessing treatment effectiveness.
  • The success of PET imaging relies on the creation of specific radiotracers that can identify exogenous transgenes or modified cells in the brain, potentially eliminating the need for invasive procedures.
  • This article discusses the current state and challenges in developing PET probes for monitoring gene therapy and cellular interventions, highlighting the importance of radiochemical development and practical applications in a clinical setting.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!