Understanding the processing of odour mixtures is a focus in olfaction research. Through a neuroethological approach, we demonstrate that different odour types, sex and habitat cues are coded together in an insect herbivore. Stronger flight attraction of codling moth males, Cydia pomonella, to blends of female sex pheromone and plant odour, compared with single compounds, was corroborated by functional imaging of the olfactory centres in the insect brain, the antennal lobes (ALs). The macroglomerular complex (MGC) in the AL, which is dedicated to pheromone perception, showed an enhanced response to blends of pheromone and plant signals, whereas the response in glomeruli surrounding the MGC was suppressed. Intracellular recordings from AL projection neurons that transmit odour information to higher brain centres, confirmed this synergistic interaction in the MGC. These findings underscore that, in nature, sex pheromone and plant odours are perceived as an ensemble. That mating and habitat cues are coded as blends in the MGC of the AL highlights the dual role of plant signals in habitat selection and in premating sexual communication. It suggests that the MGC is a common target for sexual and natural selection in moths, facilitating ecological speciation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652457 | PMC |
http://dx.doi.org/10.1098/rspb.2013.0267 | DOI Listing |
Sci Data
December 2024
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
The South American tomato pinworm, Tuta absoluta (Meyrick) is a newly emerged invasive pests causing devastating loss on tomato production globally. Semiochemical-based management is a promising method for controlling this pest. However, there is little known about how T.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:
Odorant binding proteins (OBPs) play key roles in the insect olfactory system by assisting the neuronal response to hydrophobic odor molecules, understanding their interaction with ligands will facilitate the virtual screening of behaviorally active compounds in insects. Here, we successfully cloned and confirmed CmedOBP13, an antennae-biased OBP from the rice leaffolder Cnaphalocrocis medinalis, as a secreted protein. Recombinant CmedOBP13 was obtained using the Escherichia coli system, and its binding affinities to 35 volatile compounds emitted by rice plants and three sex pheromone components from female moths were assessed by a competitive binding assay.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China.
Female semiochemicals and allyl isothiocyanate (AITC) attract moths, and the moths use odorant-degrading enzymes (ODEs) to break down the excess odor. By identifying antennae-specific ODEs, researchers have established the molecular foundation for odorant degradation and signal inactivation in insects. This enables further exploration of new pest control methods.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
Winged aphids develop more sensitive olfaction than the wingless phenotype to identify potential habitat from afar. Two types of olfactory sensilla, primary rhinarium (PRh) and secondary rhinarium (SRh) are responsible for aphid olfactory perception, of which, SRh is involved in the perception of both E-β-farnesene (EBF) and plant volatiles. Odorant binding proteins (OBPs) play a vital role in the response of insect olfactory nerves located in the rhinarium to external odor stimuli.
View Article and Find Full Text PDFHeliyon
December 2024
Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China.
The tea moth pest, is an economically important and highly damaging pest that drastically affects tea plant leaves. The chemical composition of its pheromone glands metabolites before and during calling period has not been reported yet. Therefore, the present study aimed at the metabolomic profiling of female moths' sex pheromones glands before and during calling period using gas chromatography time-of-flight mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!