The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin-antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus-host interactions and the CRISPR/Cas defence mechanism in Archaea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718332 | PMC |
http://dx.doi.org/10.1098/rsob.130010 | DOI Listing |
Nucleic Acids Res
February 2023
Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
Cell cycle regulation is crucial for all living organisms and is often targeted by viruses to facilitate their own propagation, yet cell cycle progression control is largely underexplored in archaea. In this work, we reveal a cell cycle regulator (aCcr1) carrying a ribbon-helix-helix (RHH) domain and ubiquitous in the Thermoproteota of the order Sulfolobales and their viruses. Overexpression of several aCcr1 members including gp21 of rudivirus SIRV2 and its host homolog SiL_0190 of Saccharolobus islandicus LAL14/1 results in impairment of cell division, evidenced by growth retardation, cell enlargement and an increase in cellular DNA content.
View Article and Find Full Text PDFMicroPubl Biol
November 2022
Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
Spacer acquisition, the first step in CRISPR-Cas adaptive immunity, plays a critical role in establishing and strengthening host defense against mobile genetic elements (MGEs). Here we present a host-virus system, where an increase in the multiplicity of infection (MOI), of a CRISPR-Cas susceptible virus, forces rapid spacer acquisition in the LAL14/1 CRISPR arrays. Spacer acquisition was observed as early as 30 minutes post infection, with the newly acquired spacers uniformly distributed across the genome of the virus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France;
The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-μm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family infecting a hyperthermophilic and acidophilic archaeon LAL14/1.
View Article and Find Full Text PDFViruses
December 2018
Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
Genetic engineering of viruses has generally been challenging. This is also true for archaeal rod-shaped viruses, which carry linear double-stranded DNA genomes with hairpin ends. In this paper, we describe two different genome editing approaches to mutate the rod-shaped virus 2 (SIRV2) using the archaeon LAL14/1 and its derivatives as hosts.
View Article and Find Full Text PDFNat Microbiol
April 2018
Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR-Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!