BRMS1 Sensitizes Breast Cancer Cells to ATP-Induced Growth Suppression.

Biores Open Access

Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania.

Published: April 2013

Purinergic signaling may represent an effective target in cancer therapy because the expression of purinergic receptors is altered in many forms of cancer and extracellular nucleotides modulate cancer cell growth. We examined the effect of extracellular ATP on the growth of the metastatic breast carcinoma cell line MDA-MB-435 relative to an immortalized breast epithelial cell line, hTERT-HME1. We also investigated whether the metastasis suppressor gene BRMS1 alters the sensitivity of breast cancer cells to ATP. Exposure to ATP for 24 h decreased proliferation and induced apoptosis in hTERT-HME1. However, exposure to ATP did not decrease proliferation or induce apoptosis in MDA-MD-435 cells until 48 h of exposure and only at higher doses than were effective with hTERT-HME1, suggesting MDA-MB-435 cells were resistant to the antiproliferative and apoptosis-inducing effects of ATP. Exposure to ATP for 24 h induced a decrease in proliferation of MDA-MB-435 cells expressing BRMS1, similar to hTERT-HME1, but did not induce an increase in apoptosis. MDA-MB-435 cells expressed low levels of the purinergic receptor P2Y2, as well as decreased ATP-induced cytosolic calcium mobilization, relative to hTERT-HME1. However, expressing BRMS1 in MDA-MB-435 cells restored P2Y2 levels and ATP-induced cytosolic calcium mobilization such that they were similar to hTERT-HME1. These data suggest that BRMS1 increases the sensitivity of breast cancer cells to the antiproliferative, but not apoptosis-inducing effects of ATP and that this is at least partly mediated by increased expression of the P2Y2 receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620472PMC
http://dx.doi.org/10.1089/biores.2012.0260DOI Listing

Publication Analysis

Top Keywords

mda-mb-435 cells
16
breast cancer
12
cancer cells
12
exposure atp
12
cells
8
sensitivity breast
8
atp exposure
8
atp 24 h
8
decrease proliferation
8
antiproliferative apoptosis-inducing
8

Similar Publications

Introduction: Melanoma is one of the most dangerous and common types of cancer in humans. In order to minimize the toxicity and side effects of melanoma treatment, it is important to identify drug candidates that have strong anti-cancer activity and fewer side effects. Lobaric acid is a small molecule that has been found to have significant anti-cancer effects on various types of cancer cells.

View Article and Find Full Text PDF

Over 20 years have passed since siRNA was brought to the public's attention. Silencing genes with siRNA has been used for various purposes, from creating pest-resistant plants to treating human diseases. In the last six years, several siRNA therapies have been approved by the FDA, which solely target disease-inducing proteins in the liver.

View Article and Find Full Text PDF

Radioiodinated Nanobody immunoPET probe for in vivo detection of CD147 in pan-cancer.

Eur J Nucl Med Mol Imaging

November 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Background: To develop the extracellular matrix metalloproteinase inducer (CD147)-targeting therapeutic strategies, accurate detection of CD147 expression in tumors is crucial. Owing to their relatively low molecular weights and high affinities, nanobodies (Nbs) may be powerful candidates for cancer diagnosis and therapy. In this study, we developed a novel CD147-targeted nanobody radiotracer, [I]I-NB147, which provides guidance for the noninvasive detection of CD147-overexpressing cancers.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating new inhibitors for survivin (BIRC5), an important protein in cancer cell regulation, as a new strategy for cancer treatment.
  • Researchers designed nine novel compounds based on previous work with MX-106, demonstrating stronger inhibitory effects on breast cancer cell growth in lab tests.
  • Advanced techniques like molecular modeling and assessment of drug-like properties (ADMET) were used to ensure these new compounds (Pred1-Pred9) are viable candidates for cancer therapy targeting survivin.
View Article and Find Full Text PDF

Twelve compounds, including four undescribed cytochalasins, xylariachalasins A-D (-), four undescribed polyketides (-), and four known cytochalasins (-), were isolated from the mangrove endophytic fungus QYF. Their structures and absolute configurations were established by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS), electronic circular dichroism (ECD) calculations, C NMR calculation and DP4+ analysis, single-crystal X-ray diffraction, and the modified Mosher ester method. Compounds and are rare cytochalasin hydroperoxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!