The optic tectum plays a key role in visual processing in birds. While the input from the retina is topographic in the superficial layers, the deep layers project to the thalamic nucleus rotundus in a functional topographical manner. Although the receptive fields of tectal neurons in birds have been mapped before, a high resolution description of the white and black subfields of the receptive fields of tectal neurons is not available. We measured the receptive fields of neurons in the different layers of the tectum of anesthetized chickens with black and white stimuli that were flashed on a grey background in fast progression. Our results show that neurons in the deep layers of the optic tectum tend to respond stronger to black stimuli compared to white stimuli. In addition, the receptive field sizes are larger when measured using black stimuli than with white stimuli. While the black subfield was significantly larger than the white subfield for the intermediate and deep layers, no significant effects were found for the superficial layers. Finally, we investigated the optimal stimulus size in a subset of the neurons and found that these cells respond best to small white stimuli and to large black stimuli. In the majority of the cases the response was stronger to a large black bar than to a small white bar. We propose that such a stronger response to black stimuli might be advantageous for the detection of darker objects against the brighter sky.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620443 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060782 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!