Purpose: Most electronic health record databases contain unstructured free-text narratives, which cannot be easily analyzed. Case-detection algorithms are usually created manually and often rely only on using coded information such as International Classification of Diseases version 9 codes. We applied a machine-learning approach to generate and evaluate an automated case-detection algorithm that uses both free-text and coded information to identify asthma cases.
Methods: The Integrated Primary Care Information (IPCI) database was searched for potential asthma patients aged 5-18 years using a broad query on asthma-related codes, drugs, and free text. A training set of 5032 patients was created by manually annotating the potential patients as definite, probable, or doubtful asthma cases or non-asthma cases. The rule-learning program RIPPER was then used to generate algorithms to distinguish cases from non-cases. An over-sampling method was used to balance the performance of the automated algorithm to meet our study requirements. Performance of the automated algorithm was evaluated against the manually annotated set.
Results: The selected algorithm yielded a positive predictive value (PPV) of 0.66, sensitivity of 0.98, and specificity of 0.95 when identifying only definite asthma cases; a PPV of 0.82, sensitivity of 0.96, and specificity of 0.90 when identifying both definite and probable asthma cases; and a PPV of 0.57, sensitivity of 0.95, and specificity of 0.67 for the scenario identifying definite, probable, and doubtful asthma cases.
Conclusions: The automated algorithm shows good performance in detecting cases of asthma utilizing both free-text and coded data. This algorithm will facilitate large-scale studies of asthma in the IPCI database.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pds.3438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!