Diabetes manifests from a loss in functional β-cell mass, which is regulated by a dynamic balance of various cellular processes, including β-cell growth, proliferation, and death as well as secretory function. The cell cycle machinery comprised of cyclins, kinases, and inhibitors regulates proliferation. However, their involvement during β-cell stress during the development of diabetes is not well understood. Interestingly, in a screen of multiple cell cycle inhibitors, p21 was dramatically upregulated in INS-1-derived 832/13 cells and rodent islets by two pharmacological inducers of β-cell stress, dexamethasone and thapsigargin. We hypothesized that β-cell stress upregulates p21 to activate the apoptotic pathway and suppress cell survival signaling. To this end, p21 was adenovirally overexpressed in pancreatic rat islets and 832/13 cells. As expected, p21 overexpression resulted in decreased [(3)H]thymidine incorporation. Flow cytometry analysis in p21-transduced 832/13 cells verified lower replication, as indicated by a decreased cell population in the S phase and a block in G2/M transition. The sub-G0 cell population was higher with p21 overexpression and was attributable to apoptosis, as demonstrated by increased annexin-positive stained cells and cleaved caspase-3 protein. p21-mediated caspase-3 cleavage was inhibited by either overexpression of the antiapoptotic mitochondrial protein Bcl-2 or siRNA-mediated suppression of the proapoptotic proteins Bax and Bak. Therefore, an intact intrinsic apoptotic pathway is central for p21-mediated cell death. In summary, our findings indicate that β-cell apoptosis can be triggered by p21 during stress and is thus a potential target to inhibit for protection of functional β-cell mass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680698PMC
http://dx.doi.org/10.1152/ajpendo.00663.2012DOI Listing

Publication Analysis

Top Keywords

apoptotic pathway
12
β-cell stress
12
832/13 cells
12
intrinsic apoptotic
8
functional β-cell
8
β-cell mass
8
cell cycle
8
p21 overexpression
8
cell population
8
β-cell
7

Similar Publications

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p).

View Article and Find Full Text PDF

Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (HR) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma.

View Article and Find Full Text PDF

LncRNA-THBS4 affects granulosa cell proliferation and apoptosis in diminished ovarian reserve by regulating PI3K/AKT/mTOR signaling pathway.

J Reprod Immunol

December 2024

School of Medical and Life Sciences/Reproductive &Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan Province 611137, China; Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine. Electronic address:

Backgrounds: Recent studies have found Several lncRNAs were proved differential expression in diminished ovarian reserve (DOR) patients, however, the mechanism of DOR caused by lncRNAs is still largely unclear.

Methods: High throughput sequencing was performed in ovarian GCs extracted from women with normal ovarian function and women with DOR. Bioinformation analysis was used to analyze the sequencing data and identify the differential expression of lncRNAs.

View Article and Find Full Text PDF

Anlotinib enhances the pro-apoptotic effect of APG-115 on acute myeloid leukemia cell lines by inhibiting the P13K/AKT signaling pathway.

Leuk Res

December 2024

Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008,  China; The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China. Electronic address:

Background: APG-115 is a novel small-molecule selective inhibitor that destabilizes the p53-MDM2 complex and activates p53-mediated apoptosis in tumor cells. Anlotinib inhibits tumor angiogenesis and promotes apoptosis. In this study, we investigated the apoptotic effect and potential mechanism of APG-115 and anlotinib combination on AML cell lines with different p53 backgrounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!