Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Brominated vegetable oil (BVO) is frequently used as a solubility transmitter in soft drinks. Being banned in Europe and Japan but permitted in the United States and Canada, there is a need for analytical methods suitable for use in food control. Brominated fatty acids in BVO are usually determined by gas chromatography (GC) after their conversion into the corresponding methyl esters.
Methods: GC with mass spectrometry (MS) was used to record the electron ionization (EI) and negative ion chemical ionization (NICI) mass spectra of relevant brominated fatty acid methyl esters synthesized for this purpose. Brominated fatty acids obtained from transesterified BVO from soft drink and syrup samples were also analyzed.
Results: GC/NICI-MS was the most sensitive method for the detection of brominated fatty acids but GC/EI-MS was found to be more suited for quantification due to the formation of more selective fragment ions in the higher mass range. Suitable ions were selected for determination of the methyl esters of brominated fatty acids in the selected ion monitoring (SIM) mode. Artifacts produced by the transesterification of BVO with boron trifluoride were observed and discussed. BVO was also quantified in three syrup samples commercially produced for use in cocktails/long drinks. In one of the syrup samples that tested positive, BVO was not labelled in the ingredient list. Bromination experiments produced evidence that one or more Br2 -18:0 isomers identified as a shoulder peak of threo-9,10-dibromooctadecanoic acid in several soft drink and syrup samples originated from the bromination of partly hydrogenated plant oil.
Conclusions: BVO was determined for the first time in syrup samples. Attention should be paid to the problem of BVO occurring unlabeled in soft drinks and cocktail syrups imported from North America.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.6543 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!