Enhancing far-field thermal emission with thermal extraction.

Nat Commun

Department of Electrical Engineering and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.

Published: October 2013

The control of thermal radiation is of great current importance for applications such as energy conversions and radiative cooling. Here we show theoretically that the thermal emission of a finite-size blackbody emitter can be enhanced in a thermal extraction scheme, where one places the emitter in optical contact with an extraction device consisting of a transparent object, as long as both the emitter and the extraction device have an internal density of state higher than vacuum, and the extraction device has an area larger than the emitter and moreover has a geometry that enables light extraction. As an experimental demonstration of the thermal extraction scheme, we observe a four-fold enhancement of the far-field thermal emission of a carbon-black emitter having an emissivity of 0.85.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms2765DOI Listing

Publication Analysis

Top Keywords

thermal emission
12
thermal extraction
12
extraction device
12
far-field thermal
8
extraction scheme
8
thermal
7
extraction
7
emitter
5
enhancing far-field
4
emission thermal
4

Similar Publications

Exploring Spent Coffee Grounds: Comprehensive Morphological Analysis and Chemical Characterization for Potential Uses.

Molecules

December 2024

Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 N 70-01, Medellín 050031, Colombia.

The agroindustry generates substantial quantities of byproducts, particularly in coffee production, which yields significant waste, most notably spent coffee grounds (SCGs). This study explores the potential of SCGs as a versatile resource for applications in both food and nonfood sectors. A comprehensive chemical analysis revealed that SCGs consist of 30.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).

View Article and Find Full Text PDF

This paper presents the results of research on the kinetics of transformations in the two-phase (α + β) Ti-6Al-4V alloy. The transformation start and end temperatures during heating at different rates were determined using a dilatometer. A modified dilatometer was employed, equipped with an acoustic emission measurement apparatus and software enabling the assessment of sample dimensional changes during heating and cooling.

View Article and Find Full Text PDF

In this work, the chloride system M(AlCl) (M = Ca, Sr, Ba) doped with Yb is investigated in greater detail. The influence of the [AlCl] ion on the position of the emission band of Yb is investigated and the emission spectra are recorded. The emission spectra of the Yb-doped materials are characterized by broad 4f5d (HS) ↔ 4f transitions with maxima in the range between 416 nm (Ca) and 421 nm (Ba) (24,061-23,738 cm), whereas the Ba compound features an additional 4f5d (LS) ↔ 4f emission band at 397 nm (25,203 cm) at lower temperatures.

View Article and Find Full Text PDF

This paper presents the initial results of the synthesis of β-GaO luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-GaO with particle sizes ranging from 5 to 50 μm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!