One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 10(4) S m(-1), three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644075PMC
http://dx.doi.org/10.1038/ncomms2696DOI Listing

Publication Analysis

Top Keywords

macroscopic crystals
8
intrinsic electrical
4
electrical conductivity
4
conductivity nanostructured
4
nanostructured metal-organic
4
metal-organic polymer
4
polymer chains
4
chains one-dimensional
4
one-dimensional conductive
4
conductive polymers
4

Similar Publications

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.

View Article and Find Full Text PDF

Recent advances in biomolecular self-assembly have transformed material science, enabling the creation of novel materials with unparalleled precision and functionality. Among these innovations, 3D DNA crystals have emerged as a distinctive class of macroscopic materials, engineered through the bottom-up approach by DNA self-assembly. These structures uniquely combine precise molecular ordering with high programmability, establishing their importance in advanced material design.

View Article and Find Full Text PDF

Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal.

J Am Chem Soc

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.

Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.

View Article and Find Full Text PDF

Background: Craniopharyngiomas are epithelial tumors derived from the remnants of the Rathke pouch, while Rathke cleft cysts (RCC) are benign cystic lesions originating from the Rathke pouch itself [1]. Rathke cleft cysts comprise 10-15% of the hypophyseal tumors, while craniopharyngiomas are relatively rare, comprising only 2-5% of intracranial tumors [2]. Both located in the sellar and parasellar regions and share clinical symptoms including headache, visual disturbances, and endocrine dysfunction [3].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!