Synthetic biology research is often described in terms of programming cells through the introduction of synthetic genes. Genetic material is seemingly attributed with a high level of causal responsibility. We discuss genetic causation in synthetic biology and distinguish three gene concepts differing in their assumptions of genetic control. We argue that synthetic biology generally employs a difference-making approach to establishing genetic causes, and that this approach does not commit to a specific notion of genetic program or genetic control. Still, we suggest that a strong program concept of genetic material can be used as a successful heuristic in certain areas of synthetic biology. Its application requires control of causal context, and may stand in need of a modular decomposition of the target system. We relate different modularity concepts to the discussion of genetic causation and point to possible advantages of and important limitations to seeking modularity in synthetic biology systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.shpsc.2013.03.016 | DOI Listing |
Physiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFNature
January 2025
Department of Genetics, Stanford University, Stanford, CA, USA.
Sci Rep
January 2025
Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.
View Article and Find Full Text PDFMicrob Pathog
January 2025
High School of Technology Laayoune, Ibn Zohr University, Morocco.
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. Electronic address:
The major phytochemicals in the roots of Cudrania tricuspidata are prenylated xanthones, exhibiting significant structural diversity and bioactive properties, such as anti-inflammatory, antioxidative, and antitumor effects. The biosynthetic pathways of these compounds have not yet been resolved, limiting their production through synthetic biology. In this study, benzoyl-coenzyme A (CoA) ligase (BZL), benzophenone synthase (BPS), and benzophenone 3'-hydroxylase (B3'H) transcripts involved in the biosynthesis of xanthone were cloned and characterized from C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!