A homogeneous electrochemical immunoassay is based on the interaction of osmium-antigen conjugate with its antibody. The novelty presented herein is the direct conjugation of the osmium complex to a small antigen and the application of the quantitative analysis of the antigen and its antibody as the electrical signal for homogeneous immunoassay. The small antigen chosen is hippuric acid (HA), a major urinary metabolite in toluene-exposed humans. As a redox mediator, [Os(4,4'-dimethoxy-2,2'-bipyridine)2(4-aminomethylpyridine-HA)Cl](+/2+) (Os-HA antigen) has been synthesized and characterized on screen-printed carbon electrodes. The synthesized Os-HA antigen shows reversible redox peaks at E(½)=0.056 V versus Ag/AgCl. The homogeneous competitive immunoassay relies on the interaction between Os-HA antigen conjugate and free antigen to its antibody, which can generate electrical signals linearly proportional to the free antigen monitored by cyclic voltammetry and differential pulse voltammetry in the range of 10 μg mL(-1) to 5.12 mg mL(-1). The cutoff concentration of HA in urine samples is 2.0 mg mL(-1), so the method can be used to develop a HA immunosensor. Moreover, the proposed homogeneous electrochemical immunoassay method can be applied to detect low concentrations of small antigens found in the healthcare area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201300039 | DOI Listing |
Sci Adv
January 2025
Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.
Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland.
The corrosion resistance of a CrC-25(Ni20Cr) cermet coating applied to an Al7075 substrate (CrC-25(Ni20Cr)/Al7075) was investigated. The coating was produced using a cold spraying (CS) method. The main aim of the research was to determine the effect of heat treatment on the properties of cermet coatings on the Al7075 substrate.
View Article and Find Full Text PDFChemistry
January 2025
National Tsing Hua University, Department of Chemical Engineering, 101, Sec 2, Kuang-Fu Rd., 300, Hsinchu, TAIWAN.
This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!