One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p < 0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p < 0.05), and some influence on vegetable leaves (p < 0.05), but no significant influence on Hg accumulation in grass leaves (p > 0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g(-1), respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m(-3).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-013-1691-0DOI Listing

Publication Analysis

Top Keywords

atmospheric mercury
12
vegetable grass
8
grass leaves
8
biomonitors atmospheric
8
relationships concentrations
8
concentrations air
8
air leaves
8
otcs experiment
8
experiment concentrations
8
leaves
7

Similar Publications

Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South.

Nat Commun

January 2025

Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Human activities have emitted substantial mercury into the atmosphere, significantly impacting ecosystems and human health worldwide. Currently, consistent methodologies to evaluate long-term mercury emissions across countries and industries are scant, hindering efforts to prioritize emission controls. Here, we develop a high-spatiotemporal-resolution dataset to comprehensively analyze global anthropogenic mercury emission patterns.

View Article and Find Full Text PDF

Enhanced insight into the biogeochemical cycle of Hg in the Antarctic marine environment of Terra Nova Bay via isotopic analysis.

Chemosphere

January 2025

Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium. Electronic address:

Mercury (Hg) is a globally significant pollutant, which is particularly concerning due to its ability to undergo long-range atmospheric transport and its bioaccumulation and biomagnification in marine ecosystems, even in remote regions like Antarctica. This study explores the biogeochemical cycling of Hg in the marine coastal environment of Terra Nova Bay (Antarctica) by determining the total content of mercury (THg) and its isotopic composition in fish (Trematomus bernacchii), bivalve molluscs (Adamussium colbecki) and sediment samples, collected in 1996-1998 and 2021. Significantly lower THg concentrations are found in the organisms sampled in 2021 compared to those sampled in 1996-1998, with a concurrent shift toward higher δHg (governed by mass-dependent isotope fractionation MDF) and lower ΔHg and ΔHg (governed by mass-independent isotope fractionation MIF) values.

View Article and Find Full Text PDF

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest.

View Article and Find Full Text PDF

: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!