A solid base catalyst was prepared by the sodium potassium tartrate doped zirconia and microwave assisted transesterification of soybean oil was carried out for the production of biodiesel. It was found that the catalyst of 2.0(n(Na)/n(Zr)) and calcined at 600°C showed the optimum activity. The base strength of the catalysts was tested by the Hammett indicator method, and the results showed that the fatty acid methyl ester (FAME) yield was related to their total basicity. The catalyst was also characterized by FTIR, TGA, XRD and TEM. The experimental results showed that a 2.0:1 volume ratio of methanol to oil, 65°C reaction temperature, 30 min reaction time and 10 wt.% catalyst amount gave the highest the yield of biodiesel. Compared to conventional method, the reaction time of the way of microwave assisted transesterification was shorter. The catalyst had longer lifetime and maintained sustained activity after being used for four cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.03.126DOI Listing

Publication Analysis

Top Keywords

soybean oil
8
sodium potassium
8
potassium tartrate
8
tartrate doped
8
doped zirconia
8
microwave assisted
8
assisted transesterification
8
reaction time
8
catalyst
6
optimization biodiesel
4

Similar Publications

Sterols and triterpene alcohols exist in free and esterified forms in edible oils. To date, only few studies have determined the content of free or esterified sterols and triterpene alcohols using gas chromatography-flame ionization detection (GC-FID). In this study, analytical conditions were optimized using free and esterified sterol standards.

View Article and Find Full Text PDF

Lipid oxidation hinders the development of water-in-oil (W/O) emulsions. This work aimed to determine the impact of soybean phosphatidylethanolamine (SP)/tamarind gum (TG) ratios on interface activity and anti-oxidant capacity of Maillard conjugates (MCs) in W/O emulsions. Results showed that grafting degree of MCs reached maximum with SP/TG ratio at 1:1 (43.

View Article and Find Full Text PDF

Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.

View Article and Find Full Text PDF

Comprehensive multiomics analysis reveals the effects of French fries and chicken breast meat on the oxidative degradation of lipids in soybean oil during deep-frying.

Food Chem

January 2025

Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, PR China.

This study investigated the oxidative degradation of lipids in soybean oil used for frying French fries (SOFFF) and chicken breast meat (SOFCBM) using integrated volatolomics and oxidative lipidomics. Water in the food matrix promotes triglyceride hydrolysis. The rate of lipid hydrolysis was higher in SOFCBM, whereas the rate of lipid oxidation was higher in SOFFF.

View Article and Find Full Text PDF

The and isomers of conjugated linoleic acid (CLA) are associated with anticancer and lipolytic effects in tissues, respectively, but in lactating cows, the latter isomer reduces the milk fat concentration, a detrimental aspect for the dairy industry, as it reduces the yield of milk derivatives. Therefore, the objective of this study was to evaluate the effect of providing protected palmitic acid (PA) to grazing lactating Holstein cows supplemented with soybean oil as a source of conjugated linoleic acid, on milk production, fat concentration and mitigation of milk fat depression. Nine multiparous Holstein cows were used, distributed in three groups of three cows each, with initial means of days in milk, live weight, milk production, and number of calvings: 124 ± 16 days, 494 ± 53 kg, 20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!