Diabetes is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of different organs, especially the eyes, kidneys, nerves, heart, and blood vessels. Several pathogenic processes are involved in the development of diabetes. These range from autoimmune destruction of the beta-cells of the pancreas with consequent insulin deficiency to abnormalities that result in resistance to insulin action (American Diabetes Association, 2011). The vast majority of cases of diabetes fall into two broad categories. In type 1 diabetes (T1D), the cause is an absolute deficiency of insulin secretion, whereas in type 2 diabetes (T2D), the cause is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. However, the subdivision into two main categories represents a simplification of the real situation, and research during the recent years has shown that the disease is much more heterogeneous than a simple subdivision into two major subtypes assumes. Worldwide prevalence figures estimate that there are 280 million diabetic patients in 2011 and more than 500 million in 2030 (http://www.diabetesatlas.org/). In Europe, about 6-8% of the population suffer from diabetes, of them about 90% has T2D and 10% T1D, thereby making T2D to the fastest increasing disease in Europe and worldwide. This epidemic has been ascribed to a collision between the genes and the environment. While our knowledge about the genes is clearly better for T1D than for T2D given the strong contribution of variation in the HLA region to the risk of T1D, the opposite is the case for T2D, where our knowledge about the environmental triggers (obesity, lack of exercise) is much better than the understanding of the underlying genetic causes. This lack of knowledge about the underlying genetic causes of diabetes is often referred to as missing heritability (Manolio et al., 2009) which exceeds 80% for T2D but less than 25% for T1D. In the following review, we will discuss potential sources of this missing heritability which also includes the possibility that our definition of diabetes and its subgroups is imprecise and thereby making the identification of genetic causes difficult.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2013.04.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!