Purpose: The requirement of integrins for mechanotransduction has been recognized for some time. We investigated the role of integrin subunits and their pathway in the physiological stretch induced contractility and proliferation of human bladder smooth muscle cells.

Materials And Methods: Human bladder smooth muscle cells were seeded on silicone membrane and subjected to stretch, simulating bladder cycles of various stretches and times, as controlled by customized software on a modified BioDynamic bioreactor. Cell proliferation, viability and cycle were determined by BrdU incorporation assay, the Cell Counting Kit-8 (Beyotime Institute of Biotechnology, Haimen, People's Republic of China) and flow cytometry, respectively. Cell contractility was determined using a collagen gel contraction assay.

Results: Physiological stretch increased cell contractility, proliferation and viability. Knockdown of integrin αv but not α4 in the cells disrupted the enhanced contractility induced by stretch. Under physiological stretch conditions, the integrin αv level and phospho-FAK/FAK ratio correlated positively with cell stretch induced enhanced contractility. Further examination revealed that contractile marker expression was associated with integrin αv activation through the FAK pathway. At the same time integrin α4 but not integrin αv mediated stretch induced cell proliferation and viability.

Conclusions: These data revealed that different integrins have different roles in the contractility and proliferation of human bladder smooth muscle cells under physiological stretch. This suggests that different integrins may become specific therapeutic targets in patients with voiding dysfunction. They may also be used to design a specific microenvironment for optimal bladder tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.juro.2013.04.027DOI Listing

Publication Analysis

Top Keywords

integrin αv
20
physiological stretch
20
human bladder
16
bladder smooth
16
smooth muscle
16
proliferation human
12
muscle cells
12
stretch induced
12
contractility proliferation
12
stretch
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!