Development of techniques utilizing waste without any additional energy or rare catalysts is a starting point for becoming sustainable. In the present work, the complex utilization of greenhouse residues was studied on a commercial scale. Only the energy produced by the process (8%) was used to run the technology, thanks to multilevel heat recuperation and high methane yields (over 340 m(3) volatile solid t(-1) ). Manifestations of labile carbon in relation to available nitrogen, methane yields, and the formation of inhibitors were investigated in detail. The results sweep away many false beliefs about the ratios of carbon to nitrogen and highlight the role of the availability of carbon in phytomass utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.1055 | DOI Listing |
Front Microbiol
January 2025
National Bureau of Agriculturally Important Microorganism, Mau, India.
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Afrone Network, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.
View Article and Find Full Text PDFSurg Endosc
January 2025
Department of Surgery, University of New Mexico Health Sciences Center, MSC10 5610, Albuquerque, NM, USA.
Background: Telemedicine has the potential to increase healthcare access while decreasing the environmental impact associated with providing care. We piloted total perioperative telemedicine (TPT) visits for evaluating patients with symptomatic cholelithiasis. We aimed to evaluate the feasibility and environmental impact of TPT by comparing the perioperative and environmental outcomes of patients participating in TPT to those undergoing traditional in-person preoperative evaluations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!