Optimizing the in vitro and clinical assessment of drug interaction risk by understanding co-medications in patient populations.

Expert Opin Drug Metab Toxicol

Drug Metabolism and Pharmacokinetics, GlaxoSmithKline R&D, Park Rd, Ware, Herts, SG12 0DP, UK.

Published: June 2013

Introduction: Pharmacokinetic drug interactions resulting from the inhibition of drug elimination mechanisms are of concern in drug development due to the clinical risk associated with elevated drug concentrations. Advances in understanding the mechanistic basis of these drug interactions has resulted in the widespread application of mechanistic in vitro assays and the conduct of clinical drug interaction studies to predict and quantify the risks in drug development.

Areas Covered: The authors investigate co-medication prescriptions in target patient populations and characterize the mechanistic basis and clinical impact of known co-medication drug interactions. This has enabled identification of critical mechanistic in vitro studies and provided options to manage co-medication use in clinical studies. Furthermore, they demonstrate, for the pharmaceutical scientist, how improved understanding of the drug interactions risks associated with key medications in a target therapeutic area, can help prioritize the conduct of in vitro data and optimize the timing of the clinical drug interaction studies required to characterize drug interaction risks.

Expert Opinion: This approach provides a more targeted strategy to drug interaction data generation, as routine application of assays may provide limited impact on drug progression decisions. Assessing co-medications in the target patient population enables early discharge of the safety risks associated with drug interactions and reduced investment in drug interaction studies.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425255.2013.781582DOI Listing

Publication Analysis

Top Keywords

drug interaction
24
drug interactions
20
drug
16
interaction studies
12
patient populations
8
mechanistic basis
8
mechanistic vitro
8
clinical drug
8
target patient
8
risks associated
8

Similar Publications

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Evidence of antihypertensive drug-related problems (aDRP) is limited in Asian ambulatory care. To better detect aDRP without causing alert fatigue, we investigated whether adding more antihypertensive agents was associated with increasing aDRP risk and factors associated with physician acceptance of aDRP correction. We conducted a cross-sectional study targeting ambulatory prescriptions of Vietnamese patients with hypertension who either received standard therapy (using two or fewer medications, SdT) or standard plus add-on therapy (using more than two medications, SdT + add-on).

View Article and Find Full Text PDF

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

LYVE1 and IL1RL1 are mitochondrial permeability transition-driven necrosis-related genes in heart failure.

Int J Biochem Cell Biol

January 2025

Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:

Background: Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways.

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!