The aims of this study were to profile casein phosphopeptides in goat milk, to accurately determine the site of phosphorylation, and to evaluate whether or not any of the casein phosphorylation patterns were specific to a given physiological condition. Goat milk, collected before and after experimental induction of endotoxin mastitis, was separated by SDS-PAGE. Casein bands were digested with trypsin and the resulting peptides were analyzed by nLC-MS/MS. Eight out of nine predicted tryptic phosphopeptides corresponding to 18 different phosphorylation sites were detected in αS1-, αS2-, and β-casein. Characterization of the phosphorylation sites illustrated the capability of tandem MS to accurately localize phosphorylated residues among a number of other putative sites. Despite an apparent lower abundance, almost all of the phosphopeptides were also detected in milk samples obtained from the goats following experimental induction of endotoxin mastitis. However, a tetra-phosphopeptide in αS2-casein was only observed in the milk samples obtained from healthy animals. The absence of this multiphosphopeptide in the mastitic goat milk samples could indicate changes in phosphorylation as a result of disease and potentially be used as a marker for milk quality. This study represents the first comprehensive analysis of casein phosphoproteome and reveals a much higher level of phosphorylation than previously demonstrated in goat milk.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr3010666DOI Listing

Publication Analysis

Top Keywords

goat milk
20
milk samples
12
casein phosphopeptides
8
phosphopeptides goat
8
milk
8
experimental induction
8
induction endotoxin
8
endotoxin mastitis
8
phosphorylation sites
8
phosphorylation
6

Similar Publications

Brucellosis is considered a common bacterial zoonotic disease of high prevalence in countries of the Middle East and the Mediterranean region with economic and public health impact. The present study aimed to investigate the current situation of brucellosis in small ruminants reared in Médéa and Sidi Bel-Abbès provinces, north Algeria. To achieve this objective, 96 sera (77 sheep and 19 goat) and 57 milk (42 sheep and 15 goat) samples were collected from suspected infected animals and serologically analyzed by using ELISA.

View Article and Find Full Text PDF

The purpose of the current study was to explore the effects of Moringa oleifera feed on the taxonomy and function of the rumen microbial community, and further to evaluate its impact on milk yield and body weight in lactating goats. Nineteen goats were divided into moringa leaf diet (ML; n=10) and masoor straw (MS; n=9) groups. For each group fortnight milk yield and body weight was recorded.

View Article and Find Full Text PDF

This study identified the amino acid sequences of peptides generated from the enzymatic hydrolysis of goat milk proteins from two different sources and annotated their functional activities. Peptidomics and molecular docking approaches were used to investigate the antioxidant and ACE inhibitory properties of the unique peptides, revealing the molecular mechanisms underlying their bioactivity. In vitro experiments showed that the IC50 values for ACE inhibition of the four peptides (LSMTDTR, QEALELIR, NIPVGILR, and QAQNVQHY) were 2.

View Article and Find Full Text PDF

Genomic Landscape and Prediction of Udder Traits in Saanen Dairy Goats.

Animals (Basel)

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.

Goats are essential to the dairy industry in Shaanxi, China, with udder traits playing a critical role in determining milk production and economic value for breeding programs. However, the direct measurement of these traits in dairy goats is challenging and resource-intensive. This study leveraged genotyping imputation to explore the genetic parameters and architecture of udder traits and assess the efficiency of genomic prediction methods.

View Article and Find Full Text PDF

Background: The 3-hydroxybutyrate dehydrogenase 1 (BDH1) mainly participates in the regulation of milk fat synthesis and ketone body synthesis in mammary epithelial cells. In our previous study, BDH1 was identified as a key candidate gene regulating lipid metabolism in mammary glands of dairy goats by RNA-seq. This study aimed to investigate the effect of BDH1 on lipid metabolism in mammary epithelial cells of dairy goats (GMECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!