Hot springs and saline-alkaline lakes of East Africa are extreme habitats regarding temperature, or salinity and pH, respectively. This study examines whether divergent habitats of Lake Bogoria, Kenya, impacts cyanobacterial community structure. Samples from the hot springs, pelagic zone and sediment were analysed by light microscopy, multilocus 454-amplicons sequencing and metagenomics to compare the cyanobacterial diversity. Most of the phylogenetic lineages of Cyanobacteria occurred exclusively in the Bogoria hot springs suggesting a high degree of endemism. The prevalent phylotypes were mainly members of the Oscillatoriales (Leptolyngbya, Spirulina, Oscillatoria-like and Planktothricoides). The Chroococcales were represented by different clades of Synechococcus but not a single phylotype clustered with any of the lineages described earlier from different continents. In contrast, we found that the pelagic zone and the sediments were inhabited by only a few taxa, dominated by Arthrospira and Anabaenopsis. Arthrospira, the main food base of Lesser Flamingo, was detected in all three habitats by amplicons pyrosequencing, indicating its resilience and key role as a primary producer. Despite the close connection between the three habitats studied, the cyanobacterial communities in the hot springs and lake differed considerably, suggesting that they are unable to adapt to the extreme conditions of the neighbouring habitat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1574-6941.12128 | DOI Listing |
PLoS One
January 2025
Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Climate and Environmental Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.
View Article and Find Full Text PDFSci Rep
January 2025
INES Integrated Environmental Solutions UG, Wilhelmshaven, Germany.
Hydrothermal vents are ecosystems inhabited by a highly specialized fauna. To date, more than 30 gastropod species have been recorded from vent fields along the Central and Southeast Indian Ridge and all of them are assumed to be vent-endemic. During the INDEX project, 701 representatives of the genus Anatoma (Mollusca: Vetigastropoda) were sampled from six abyssal hydrothermal vent fields.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratory of Plant Pathology and Bioproducts, Faculty of Agronomic Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile.
The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor bacteria with plant growth-promoting activities, particularly interesting to the strains J19, TP22, A20, and A3.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!