The lack of dependable morphological indicators for the onset and end of seed growth has hindered modeling work in the common bean (Phaseolus vulgaris L.). We have addressed this problem through the use of mathematical growth functions to analyse and identify critical developmental stages, which can be linked to existing developmental indices. We performed this study under greenhouse conditions with an Andean and a Mesoamerican genotype of contrasting pod and seed phenotypes, and three selected recombinant inbred lines. Pods from tagged flowers were harvested at regular time intervals for various measurements. Differences in flower production and seed and pod growth trajectories among genotypes were detected via comparisons of parameters of fitted growth functions. Regardless of the genotype, the end of pod elongation marked the beginning of seed growth, which lasted until pods displayed a sharp decline in color, or pod hue angle. These results suggest that the end of pod elongation and the onset of color change are reliable indicators of important developmental transitions in the seed, even for widely differing pod phenotypes. We also provide a set of equations that can be used to model different aspects of reproductive growth and development in the common bean.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12114DOI Listing

Publication Analysis

Top Keywords

growth functions
12
common bean
12
development common
8
bean phaseolus
8
seed growth
8
pod elongation
8
growth
7
pod
6
seed
5
flower seed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!