[Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].

Guang Pu Xue Yu Guang Pu Fen Xi

School of Control Science and Engineering, Shandong University, Ji'nan 250061, China.

Published: January 2013

An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.

Download full-text PDF

Source

Publication Analysis

Top Keywords

optical fiber
16
f-p sensor
16
fiber f-p
12
reflection spectral
12
spectral contrast
12
coated optical
8
optical f-p
8
optical
6
f-p
6
[spectral characteristics
4

Similar Publications

Purpose: To compare the retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer thickness, central subfield thickness (CSFT), and parafoveal and perifoveal thickness in children of different age groups with young adult controls by using spectral-domain optical coherence tomography.

Methods: This cross-sectional study included children aged 6-17 years and adult controls (18-22 years) - group 1: 6-9 years (57 eyes), group 2: 10-13 years (116 eyes), group 3: 14-17 years (66 eyes), and group 4 (controls): 18-22 years (61 eyes). A mixed-effects model was used to compare the OCT parameters among the groups, along with multivariable analysis.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

A New Caffeine Detection Method Using a Highly Multiplexed Smartphone-Based Spectrometer.

Biosensors (Basel)

December 2024

Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining 314400, China.

Smartphones equipped with highly integrated sensors are increasingly being recognized as powerful tools for rapid on-site testing. Here, we propose a low-cost, portable, and highly multiplexed smartphone-based spectrometer capable of collecting three types of spectra-transmission, reflection, and fluorescence-by simply replacing the optical fiber attached to the housing. Spectral analysis is performed directly on the smartphone using a custom-developed app.

View Article and Find Full Text PDF

Rapid and accurate determination of target proteins in cells provide essential diagnostic information for early detection of diseases, evaluation of drug responses, and the study of pathophysiological mechanisms. Traditional Western blotting method has been used for the determination, but it is complex, time-consuming, and semi-quantitative. Here, a tapered seven-core fiber (TSCF) biosensor was designed and fabricated.

View Article and Find Full Text PDF

Clinical confocal laser endomicroscopy for imaging of autofluorescence signals of human brain tumors and non-tumor brain.

J Cancer Res Clin Oncol

December 2024

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Purpose: Analysis of autofluorescence holds promise for brain tumor delineation and diagnosis. Therefore, we investigated the potential of a commercial confocal laser scanning endomicroscopy (CLE) system for clinical imaging of brain tumors.

Methods: A clinical CLE system with fiber probe and 488 nm laser excitation was used to acquire images of tissue autofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!