While the basis of neuronal degeneration in Alzheimer's disease (AD) continues to be debated, the amyloid cascade hypothesis remains central. Amyloid plaques are a required pathological marker for post mortem diagnosis, and Aβ peptide is regarded by most as a critical trigger at the very least. We present spectrochemical image analysis of brain tissue sections obtained with the mid-infrared beamline IRENI (InfraRed ENvironmental Imaging, Synchrotron Radiation Center, U Wisconsin-Madison), where the pixel resolution of 0.54 × 0.54 µm(2) permits analysis at sub-cellular dimensions. Spectrochemical images of dense core plaque found in hippocampus and cortex sections of two transgenic mouse models of AD (TgCRND8 and 3×Tg) are compared with plaque images from a 91 year old apoE43 human AD case. Spectral analysis was done in conjunction with histochemical stains of serial sections. A lipid membrane-like spectral signature surrounded and infiltrated the dense core plaques in all cases. Remarkable compositional similarities in early stage plaques suggest similar routes to plaque formation, regardless of genetic predisposition or mammalian origin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an00295kDOI Listing

Publication Analysis

Top Keywords

amyloid plaques
8
alzheimer's disease
8
dense core
8
synchrotron ftir
4
ftir reveals
4
reveals lipid
4
lipid amyloid
4
plaques
4
plaques transgenic
4
transgenic mice
4

Similar Publications

Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Methodological developments in biomedical research are currently moving towards single-cell approaches. This allows for a much better spatial and functional characterization of, for example, the deterioration of cells within a tissue in response to noxae. However, subcellular resolution is also essential to elucidate whether observed impairments are driven by an explicit organelle.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.

Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!