Kinetic evidence for a non-Langmuir-Hinshelwood surface reaction: H/D exchange over Pd nanoparticles and Pd(111).

Chemphyschem

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.

Published: June 2013

The mechanism of hydrogen recombination on a Pd(111) single crystal and well-defined Pd nanoparticles is studied using pulsed multi-molecular beam techniques and the H2/D2 isotope exchange reaction. The focus of this study is to obtain a microscopic understanding of the role of subsurface hydrogen in enhancing the associative desorption of molecular hydrogen. HD production from H2 and D2 over Pd is investigated using pulsed molecular beams, and the temperature dependence and reaction orders are obtained for the rate of HD production under various reaction conditions designed to modulate the amount of subsurface hydrogen present. The experimental data are compared to the results of kinetic modeling based on different mechanisms for hydrogen recombination. We found that under conditions where virtually no subsurface hydrogen species are present, the HD formation rate can be described exceptionally well by a classic Langmuir-Hinshelwood model. However, this model completely fails to reproduce the experimentally observed high HD formation rates and the reaction orders under reaction conditions where subsurface hydrogen is present. To analyze this phenomenon, we develop two kinetic models that account for the role of subsurface hydrogen. First, we investigate the possibility of a change in the reaction mechanism, where recombination of one subsurface and one surface hydrogen species (known as a breakthrough mechanism) becomes dominant when subsurface hydrogen is present. Second, we investigate the possibility of the modified Langmuir-Hinshelwood mechanism with subsurface hydrogen lowering the activation energy for recombination of two hydrogen species adsorbed on the surface. We show that the experimental reaction kinetics can be well described by both kinetic models based on non-Langmuir-Hinshelwood-type mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201300179DOI Listing

Publication Analysis

Top Keywords

subsurface hydrogen
28
hydrogen
12
hydrogen species
12
reaction
8
hydrogen recombination
8
subsurface
8
role subsurface
8
reaction orders
8
reaction conditions
8
kinetic models
8

Similar Publications

At present, the modification of palladium (Pd) catalysts is an important topic due to its potential to enhance catalytic performance and reduce catalyst costs. In this work, boron (B) and carbon (C) are interstitially doped into the subsurface of Pd to construct PdB and PdC catalysts. The adsorption properties of acetylene and ethylene, the mechanism of acetylene hydrogenation, and ethylene selectivity are studied based on density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.

View Article and Find Full Text PDF

Hydrogenotrophic methanogenesis at 7-12 mbar by Methanosarcina barkeri under simulated martian atmospheric conditions.

Sci Rep

January 2025

Department of Plant Pathology, Space Life Sciences Lab, University of Florida, 505 Odyssey Way, Exploration Park,, Merritt Island, FL, 32953, USA.

Mars, with its ancient history of long-lived habitable environments, continues to captivate researchers exploring the potential for extant life. This study investigates the biosignature potential of Martian methane by assessing the viability of hydrogenotrophic methanogenesis in Methanosarcina barkeri MS under simulated Martian surface conditions. We expose M.

View Article and Find Full Text PDF

Mechanistic Understanding of Dissociated Hydrogen in Cu/CeO-Catalyzed Methanol Synthesis.

ACS Appl Mater Interfaces

January 2025

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.

The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO catalysts using spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules.

View Article and Find Full Text PDF

Magnesium hydride (MgH) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material's limiting factor is the high dehydrogenation temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard applications. Catalysts and physical restructuring (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!