Until well into the 1990s, both preclinical and clinical research focused on finding "the" gene for human diseases, including alcoholism. This focus was reinforced by the emergence of technologies to either inactivate (i.e., knock out) a gene or add extra copies of an existing gene in a living organism, which clearly demonstrated that over- or underexpressing a single gene could have a profound effect on behavior. However, a small but vocal group of scientists, including many alcohol researchers, argued that behaviors, including alcohol-related behaviors, were complex traits and therefore no one gene likely would have a large effect. This view was consistent with a large body of genetic research conducted in plants and fruit flies (e.g., Paterson et al. 1988) indicating that, for example, even a presumably simple characteristic, such as the size of a tomato, was determined by several genes. However, it was difficult to convince the scientific community that, in terms of its genetic determination, behavior was similar to the size of a tomato. Only with the advent of new genetic tools did it become possible to prove that many different genes contribute to complex behavioral characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860490 | PMC |
BMC Plant Biol
December 2024
Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China.
Background: Fruit size is a crucial economic trait that impacts the quality of jujube (Ziziphus jujuba), however, research in this area remains limited. This study utilized two jujube cultivars with similar genetic backgrounds but differing fruit sizes to investigate the regulatory mechanisms affecting fruit size through cytological observations, transcriptome sequencing, and heterologous overexpression.
Results: The findings reveal that variations in mesocarp cell numbers during early fruit development significantly influence final fruit size.
Food Sci Nutr
December 2024
Department of Food Science and Technology Bushehr Institute of Kherad Higher Education Bushehr Iran.
The deterioration of meat products is significantly influenced by the oxidation of lipids. The addition of antioxidants is one of the accepted methods to retard lipid oxidation. The goal of this research was to encapsulate tomato powder with chia seed mucilage by lyophilization.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
During the field visits in growing season of 2022 in Dammam Region of Saudi Arabia, begomovirus-like symptoms including leaf curling, leaf cupping, leaf distortion, vein thickening and reduced leaf size were observed in squash and cucumber fields. Twenty-five samples were collected from each crop and PCR amplification was done using general diagnostic begomovirus primers (AC-1048/AV-494 and Begomo I/Begomo II). The obtained results showed desired sized amplified DNA fragments (550 bp and 1.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
The present study aimed to investigate the impact of progressive drought stress (100%, 75%, 50%, and 25% of field capacity) on photosynthetic light reactions of tomato plants. The imposed drought caused a gradual reduction in leaf RWC leading to a decline in pigment concentration and growth indices. Significant alteration in the OJIP fluorescence transient curves and the formation of specific fluorescence bands (L, K, J, H, and G) gradually increased as drought severity increased.
View Article and Find Full Text PDFPhys Rev E
November 2024
Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Universidade NOVA de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal.
Nearly half of the bee species can perform a fascinating stereotyped behavior to collect pollen grains by vibrating flowers, known as buzz pollination. During the floral visit, these bees mechanically transfer the vibrations produced by their thoracic indirect flight muscles to the flower anther, inducing the movement of the pollen grains and leading them to be released through a small pore or slit placed at the tip of the anther in poricidal flowers. In such flowers, pollen release is affected by the vibrational behavior of buzzing bees, primarily their duration and velocity amplitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!