Background: Adverse health effects associated with diesel exhaust (DE) are thought to be mediated in part by oxidative stress, but the detailed mechanisms are largely unknown. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and may respond to exposures such as DE.

Objectives: We profiled peripheral blood cellular miRNAs in participants with mild asthma who were exposed to controlled DE with and without antioxidant supplementation.

Methods: Thirteen participants with asthma underwent controlled inhalation of filtered air and DE in a double-blinded, randomized crossover study of three conditions: a) DE plus placebo (DEP), b) filtered air plus placebo (FAP), or c) DE with N-acetylcysteine supplementation (DEN). Total cellular RNA was extracted from blood drawn before exposure and 6 hr after exposure for miRNA profiling by the NanoString nCounter assay. MiRNAs significantly associated with DEP exposure and a predicted target [nuclear factor (erythroid-derived 2)-like 2 (NRF2)] as well as antioxidant enzyme genes were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for validation, and we also assessed the ability of N-acetylcysteine supplementation to block the effect of DE on these specific miRNAs. 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured in plasma as a systemic oxidative stress marker.

Results: Expression of miR-21, miR-30e, miR-215, and miR-144 was significantly associated with DEP. The change in miR-144 was validated by RT-qPCR. NRF2 and its downstream antioxidant genes [glutamate cysteine ligase catalytic subunit (GCLC) and NAD(P)H:quinone oxidoreductase 1 (NQO1)] were negatively associated with miR-144 levels. Increases in miR-144 and miR-21 were associated with plasma 8-hydroxydeoxyguanosine 8-OHdG level and were blunted by antioxidant (i.e, DEN).

Conclusions: Systemic miRNAs with plausible biological function are altered by acute moderate-dose DE exposure. Oxidative stress appears to mediate DE-associated changes in miR-144.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672916PMC
http://dx.doi.org/10.1289/ehp.1205963DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
diesel exhaust
8
randomized crossover
8
crossover study
8
filtered air
8
n-acetylcysteine supplementation
8
associated dep
8
exposure
5
antioxidant
5
associated
5

Similar Publications

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Efficacy and Safety of Sulforaphane Added to Antipsychotics for the Treatment of Negative Symptoms of Schizophrenia: A Randomized Controlled Trial.

J Clin Psychiatry

January 2025

Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, and Department of Psychiatry, New York University School of Medicine, New York, New York.

There are few established treatments for negative symptoms in schizophrenia, which persist in many patients after positive symptoms are reduced. Oxidative stress, inflammation, and epigenetic modifications involving histone deacetylase (HDAC) have been implicated in the pathophysiology of schizophrenia. Sulforaphane has antioxidant properties and is an HDAC inhibitor.

View Article and Find Full Text PDF

Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!