Dynamic class imbalance learning for incremental LPSVM.

Neural Netw

Department of Computing, Unitec Institute of Technology, Private Bag 92025, Auckland 1025, New Zealand.

Published: August 2013

Linear Proximal Support Vector Machines (LPSVMs), like decision trees, classic SVM, etc. are originally not equipped to handle drifting data streams that exhibit high and varying degrees of class imbalance. For online classification of data streams with imbalanced class distribution, we propose a dynamic class imbalance learning (DCIL) approach to incremental LPSVM (IncLPSVM) modeling. In doing so, we simplify a computationally non-renewable weighted LPSVM to several core matrices multiplying two simple weight coefficients. When data addition and/or retirement occurs, the proposed DCIL-IncLPSVM(1) accommodates newly presented class imbalance by a simple matrix and coefficient updating, meanwhile ensures no discriminative information lost throughout the learning process. Experiments on benchmark datasets indicate that the proposed DCIL-IncLPSVM outperforms classic IncSVM and IncLPSVM in terms of F-measure and G-mean metrics. Moreover, our application to online face membership authentication shows that the proposed DCIL-IncLPSVM remains effective in the presence of highly dynamic class imbalance, which usually poses serious problems to previous approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2013.02.007DOI Listing

Publication Analysis

Top Keywords

class imbalance
20
dynamic class
12
imbalance learning
8
incremental lpsvm
8
data streams
8
proposed dcil-inclpsvm
8
imbalance
5
class
5
learning incremental
4
lpsvm linear
4

Similar Publications

In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.

View Article and Find Full Text PDF

Multiclass imbalance is a challenging problem in real-world datasets, where certain classes may have a low number of samples because they correspond to rare occurrences. To address the challenge of multiclass imbalance, this paper introduces a novel hybrid cluster-based oversampling and undersampling (HCBOU) technique. By clustering and separating classes into majority and minority categories, this algorithm retains the most information during undersampling while generating efficient data in the minority class.

View Article and Find Full Text PDF

As people's material living standards continue to improve, the types and quantities of household garbage they generate rapidly increase. Therefore, it is urgent to develop a reasonable and effective method for garbage classification. This is important for resource recycling and environmental improvement and contributes to the sustainable development of production and the economy.

View Article and Find Full Text PDF

Introduction: Risk prediction models are increasingly used in healthcare to aid in clinical decision-making. In most clinical contexts, model calibration (i.e.

View Article and Find Full Text PDF

Challenges and compromises: Predicting unbound antibody structures with deep learning.

Curr Opin Struct Biol

January 2025

Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, United Kingdom.

Therapeutic antibodies are manufactured, stored and administered in the free state; this makes understanding the unbound form key to designing and improving development pipelines. Prediction of unbound antibodies is challenging, specifically modelling of the CDRH3 loop, where inaccuracies are potentially worse due to a bias in structural data towards antibody-antigen complexes. This class imbalance provides a challenge for deep learning models trained on this data, potentially limiting generalisation to unbound forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!