Osteocytes have been implicated in the control of bone formation. However, the signal transduction pathways that regulate the biological function of osteocytes are poorly defined. Limited evidence suggests an important role for the Gs/cAMP pathway in osteocyte function. In the present study, we explored the hypothesis that cAMP-dependent kinase A (PKA) activation in osteocytes plays a key role in controlling skeletal homeostasis. To test this hypothesis, we mated mice harboring a Cre-conditional, mutated PKA catalytic subunit allele that encodes a constitutively active form of PKA (CαR) with mice expressing Cre under the control of the osteocyte-specific promoter, DMP1. This allowed us to direct the expression of CαR to osteocytes in double transgenic progeny. Examination of Cre expression indicated that CαR was also expressed in late osteoblasts. Cortical and trabecular bone parameters from 12-week old mice were determined by μCT. Expression of CαR in osteocytes and late osteoblasts altered the shape of cortical bone proximal to the tibia-fibular junction (TFJ) and produced a significant increase in its size. In trabecular bone of the distal femur, fractional bone volume, trabecular number, and trabecular thickness were increased. These increases were partially the results of increased bone formation rates (BFRs) on the endosteal surface of the cortical bone proximal to the TFJ as well as increased BFR on the trabecular bone surface of the distal femur. Mice expressing CαR displayed a marked increase in the expression of osteoblast markers such as osterix, runx2, collagen 1α1, and alkaline phosphatase (ALP). Interestingly, expression of osteocyte marker gene, DMP1, was significantly up-regulated but the osteocyte number per bone area was not altered. Expression of SOST, a presumed target for PKA signaling in osteocytes, was significantly down-regulated in females. Importantly, no changes in bone resorption were detected. In summary, constitutive PKA signaling in osteocytes and late osteoblasts led to a small expansion of the size of the cortical bone proximal to the TFJ and an increase in trabecular bone in female mice. This was associated with down-regulation of SOST and up-regulation of several osteoblast marker genes. Activation of the PKA pathway in osteocytes and late osteoblasts is sufficient for the initiation of an anabolic skeletal response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690773 | PMC |
http://dx.doi.org/10.1016/j.bone.2013.04.001 | DOI Listing |
iScience
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Int J Biol Macromol
January 2025
State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China. Electronic address:
The mechanical properties and bioactive motif densities of extracellular matrix materials play crucial roles in regulating cell behaviors, such as cell adhesion, migration, proliferation, and differentiation. However, current studies on cellular responses to ECM predominantly concentrated on polymer hydrogels featuring a single factor, such as the mechanical strength, the types of bioactive motifs, and the morphology of the polymers. This limited focus may overlook the complex interplay of multiple factors.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA. Electronic address:
Bioenergetic preferences of osteolineage cells, including osteoprogenitors and osteoblasts (OBs), are a matter of intense debate. Early studies pointed to OB reliance on glucose and aerobic glycolysis while more recent works indicated the importance of glutamine as a mitochondrial fuel. Aiming to clarify this issue, we performed metabolic tracing of C-labeled glucose and glutamine in human osteolineage cells: bone marrow stromal (a.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Instituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Background: Pathological bone fracturing is an escalating problem driven by increasing aging and obesity. Bioceramics, particularly tricalcium-phosphate-based materials (TCP), are renowned for their exceptional biocompatibility, osteoconductivity, and ability to promote biomineralization. In the present study, we designed and characterized TCP porous granules doped with strontium (Sr) and copper (Cu) (CuSr TCP).
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, 38206, Spain.
Introduction: Osteoporosis is a metabolic disorder characterized by the loss of bone mass and density. Nucleic acid-based therapies are among the most innovative approaches for osteoporosis management, although their effective delivery to bone tissue remains a challenge. In this work, SFRP1-silencing GampeR loaded-nanoparticles were prepared and functionalized with specific moieties to improve bone targeting and, consequently, therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!