Aims: Temporin-1CEa, a 17-residue antimicrobial peptide, is known to exert broad-spectrum anticancer activity that acts preferentially on cancer cells instead of normal cells. However, the mechanism of cancer cell death induced by temporin-1CEa is weakly understood.
Main Methods: Here, we investigated the cytotoxic and membrane-disrupting effects of temporin-1CEa on human breast cancer cell line Bcap-37, using MTT assay, electronic microscope observation, fluorescence imaging and flow cytometry analysis.
Key Findings: The MTT assay indicated that one-hour temporin-1CEa treatment led to rapid cell death in either caspase-dependent or -independent manner. The electronic microscope observation suggested that temporin-1CEa exposure resulted in profound morphological changes in Bcap-37 cells. The fluorescence imaging and flow cytometry analysis demonstrated that temporin-1CEa exhibited membrane-disrupting property characterized by induction of cell-surface phosphatidylserine exposure, elevation of plasma membrane permeability, and rapid transmembrane potential depolarization. Moreover, temporin-1CEa might also induce rapid cell death through mitochondria-involved mechanisms, including rapid intracellular Ca(2+) leakage, collapse of mitochondrial membrane potential (Δφm) and over-generation of reactive oxygen species (ROS).
Significance: In summary, the present study indicates that temporin-1CEa triggers a rapid cytotoxicity in Bcap-37 cells through membrane-destruction and intracellular mechanisms involving mitochondria. These intracellular mechanisms and direct membrane-destruction effect were evaluated helping to understand the detail action of antimicrobial peptides in mammalian cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2013.03.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!