Nanospheres of low molecular weight poly lactic co glycolic acid (PLGA) with high glycolic acid content (10:90) and polylactic acid (PLA) are synthesized and loaded with meropenem, a broad spectrum antibiotic. The loading efficiency of the drug is 82 and 70% in PLGA 10:90 and PLA respectively. The rate of drug release is higher with PLGA 10:90 (3.2 μg/s) than with PLA (2.4 μg/s). Eighty and 60% of the encapsulated drug is released from the two polymers in 30 days respectively. Initial burst followed by sustained drug release is observed which is mathematically explained using a biphasic model. The drug release from the former polymer leads to two times lower E. coli growth than the release from the latter. The nanoparticles are biocompatible with no significant effect on the viability of 3T3 cells. This study indicates that PLGA 10:90 can be used for the delivery of antibiotics for interim period, especially for post orthopaedic surgeries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2013.02.004 | DOI Listing |
J Control Release
January 2025
Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Waltham, MA, USA.
Cota is a lipidated dual GLP-1 and Glucagon receptor agonist that was investigated for the treatment of various metabolic diseases, it is designed for once daily subcutaneous administration. Invasive daily injections often result in poor patient compliance with chronic disease, and here, we demonstrate an innovative strategy of encapsulating reversible cota self-assembled fibers within an in-situ forming depot of low molecular weight poly(lactic-co-glycolic) acid (LWPLGA) for sustained delivery GLP-1 and Glucagon receptor agonist with controlled burst release. This could be a suitable alternative to other sustained delivery strategies for fibrillating peptides.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China. Electronic address:
Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, a Cl/O etching-assisted self-assembly strategy is reported for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with a high current density of 223 mA cm@0.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.
Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.
ACS Sens
January 2025
School of Basic Medical Science, Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an 710021, China.
To enhance exploration on tumor stem-like cells (TSCs) without altering their cellular biological characteristics, researchers advocate for application of single-cell-derived tumor-spheres (STSs). TSCs are regulated by their surrounding microenvironment, making it crucial to simulate a tumor microenvironment to facilitate STS formation. Recently, exosomes that originated from the tumor microenvironment have emerged as a promising approach for mimicking the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!