Perinatal hypoxic-ischemic brain injury and stroke in the developing brain remain important causes of chronic neurologic morbidity. Emerging data suggest that transplantation of umbilical cord blood-derived stem cells may have therapeutic potential for neuroregeneration and improved functional outcome. The pluripotent capacity of stem cells from the human umbilical cord blood provides simultaneous targeting of multiple neuropathologic events initiated by a hypoxic-ischemic insult. Their high regenerative potential and naïve immunologic phenotype makes them a preferable choice for transplantation. A multiplicity of transplantation protocols have been studied with a variety of brain injury models; however, only a few have been conducted on immature animals. Biological recipient characteristics, such as age and sex, appear to differentially modulate responses of the animals to the transplanted cord blood stem cells. Survival, migration, and function of the transplanted cells have also been studied and reveal insights into the mechanisms of cord blood stem cell effects. Data from preclinical studies have informed current clinical safety trials of human cord blood in neonates, and further work is needed to continue progress in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pediatrneurol.2012.10.010DOI Listing

Publication Analysis

Top Keywords

cord blood
20
umbilical cord
12
brain injury
12
stem cells
12
human umbilical
8
blood stem
8
cord
6
blood
5
pluripotent possibilities
4
possibilities human
4

Similar Publications

Hematologic Complications of Pregnancy.

Eur J Haematol

January 2025

Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA.

Hematologic complications are common in pregnancy and can significantly impact both maternal and fetal health. Recognizing and treating these complications can be challenging due to the limited evidence available to guide clinical consultants. Iron deficiency anemia is the most prevalent hematologic issue in pregnancy and often occurs due to increased maternal blood volume and the nutritional demands of the growing fetus.

View Article and Find Full Text PDF

Bone is a dynamic tissue that serves several purposes in the human body, including storing calcium, forming blood cells, and protecting and supporting the body's organs. Alkaline phosphatase (ALP) is secreted into the circulation by osteoblasts, the cells responsible for making bone. It attaches to the surface of osteoblast cells or matrix vesicles.

View Article and Find Full Text PDF

Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters.

Asian J Androl

January 2025

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.

Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected.

View Article and Find Full Text PDF

Background: Pregnancy related hypertension is a leading cause of preventable maternal morbidity and mortality in the US, with consistently higher rates affecting racial minorities. Many complications are preventable with timely treatment, in alignment with the Alliance for Innovation on Maternal Health's Patient Safety Bundle ("Bundle"). The Bundle has been implemented successfully in inpatient settings, but 30% of preeclampsia-related morbidity occurs in outpatient settings in North Carolina.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!