Investigating a method for estimating direct nitrous oxide emissions from grazed pasture soils in New Zealand using NZ-DNDC.

Sci Total Environ

Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand. Electronic address:

Published: November 2013

In this study, we developed emission factor (EF) look-up tables for calculating the direct nitrous oxide (N2O) emissions from grazed pasture soils in New Zealand. Look-up tables of long-term average direct emission factors (and their associated uncertainties) were generated using multiple simulations of the NZ-DNDC model over a representative range of major soil, climate and management conditions occurring in New Zealand using 20 years of climate data. These EFs were then combined with national activity data maps to estimate direct N2O emissions from grazed pasture in New Zealand using 2010 activity data. The total direct N2O emissions using look-up tables were 12.7±12.1 Gg N2O-N (equivalent to using a national average EF of 0.70±0.67%). This agreed with the amount calculated using the New Zealand specific EFs (95% confidence interval 7.7-23.1 Gg N2O-N), although the relative uncertainty increased. The high uncertainties in the look-up table EFs were primarily due to the high uncertainty of the soil parameters within the selected soil categories. Uncertainty analyses revealed that the uncertainty in soil parameters contributed much more to the uncertainty in N2O emissions than the inter-annual weather variability. The effect of changes to fertiliser applications was also examined and it was found that for fertiliser application rates of 0-50 kg N/ha for sheep and beef and 60-240 kg N/ha for dairy the modelled EF was within ±10% of the value simulated using annual fertiliser application rates of 15 kg N/ha and 140 kg N/ha respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.03.053DOI Listing

Publication Analysis

Top Keywords

n2o emissions
16
emissions grazed
12
grazed pasture
12
look-up tables
12
direct nitrous
8
nitrous oxide
8
pasture soils
8
soils zealand
8
activity data
8
direct n2o
8

Similar Publications

Effects of Conservation Agriculture on Soil NO Emissions and Crop Yield in Global Cereal Cropping Systems.

Glob Chang Biol

January 2025

Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People's Republic of China.

Conservation agriculture, which involves minimal soil disturbance, permanent soil cover, and crop rotation, has been widely adopted as a sustainable agricultural practice globally. However, the effects of conservation agriculture practices on soil NO emissions and crop yield vary based on geography, management methods, and the duration of implementation, which has hindered its widespread scientific application. In this study, we assessed the impacts of no-tillage (NT), both individually and in combination with other conservation agriculture principles, on soil NO emissions and crop yields worldwide, based on 1270 observations from 86 peer-reviewed articles.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Insight into enhanced adaptability of iron-carbon biofilter in treating low-carbon nitrogen mariculture wastewater for nitrogen removal and carbon reduction.

Bioresour Technol

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China. Electronic address:

Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO-N removal efficiency (65.

View Article and Find Full Text PDF

Basic Characteristics of Ionic Liquid-Gated Graphene FET Sensors for Nitrogen Cycle Monitoring in Agricultural Soil.

Biosensors (Basel)

January 2025

Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan.

Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3--N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (NO), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO).

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!