Objectives: To evaluate the collagen cross-linkers, riboflavin-ultraviolet-A (RF/UVA) and glutaraldehyde, with regard to their efficacy in cross-linking the dentinal collagen and improving dentin bonding.

Methods: Glutaraldehyde and different RF/UVA protocols (0.1%RF/1-minUV, 0.1%RF/2-minUV, and 1%RF/1-minUV) were first evaluated by gel electrophoresis to determine their abilities of collagen cross-linking. The mechanical properties of acid-etched dentin receiving these cross-linking treatments were examined in either dry or wet condition by a nanoindentation test. Fifteen teeth with exposed occlusal dentin received the microtensile bond strength (μTBS) test. The teeth were primed either with RF/UVA or glutaraldehyde, followed by adhesive treatment and composite restorations, and then cut into resin-dentin microbeams. Half of the microbeams received the μTBS test after 24h, and the other half received test after 5000 thermocycles. Nanoleakage at the bond interface was examined under TEM. The alignments of collagen fibrils in the hybrid layers were also defined by an image analysis.

Results: Gel electrophoresis showed that glutaraldehyde induced strong collagen gelation, while RF/UVA generated milder collagen cross-linking. Glutaraldehyde, 0.1%RF/2-min-UVA, and 1%RF/1-minUV showed higher stiffness compared to untreated and 0.1%RF/1-minUV in wet condition. All the crosslinking treatments improved early μTBS, but 0.1%RF/2-minUVA treatment maintained high μTBS after theromocycles. Under TEM, glutaraldehyde-treated dentin showed dense and enclosed collagen network on the adhesive interface. 0.1%RF/2-minUVA showed the least nanoleakage, and this could be associated with the suspended collagen fibrils in the hybrid layer.

Significance: 0.1%RF/2-minUVA treatment enhanced resin-dentin bond possibly through enhancing the stiffness and maintaining the expanding collagen matrix in the hybrid layer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2013.03.015DOI Listing

Publication Analysis

Top Keywords

collagen cross-linking
12
collagen
9
cross-linking treatments
8
improving dentin
8
rf/uva glutaraldehyde
8
gel electrophoresis
8
wet condition
8
μtbs test
8
collagen fibrils
8
fibrils hybrid
8

Similar Publications

Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.

View Article and Find Full Text PDF

Mechanically regulated microcarriers with stem cell loading for skin photoaging therapy.

Bioact Mater

April 2025

Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.

Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable of modulating stem cell differentiation to treat photoaged skin.

View Article and Find Full Text PDF

This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.

View Article and Find Full Text PDF

The cornea is the primary refracting surface of the eye, requiring precise curvature to ensure optimal vision. Any distortion in its shape may result in significant visual impairment. Corneal ectasias, such as keratoconus (KC), is characterized by gradual thinning and protrusion of the thinned area, due to biomechanical weakening of the tissue, leading to astigmatism and vision loss.

View Article and Find Full Text PDF

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!