Aims: This study addresses the antibacterial activity and mechanism of action of BIOLL(+®), a commercial extract obtained from citrus fruits.
Methods And Results: Strong activities with minimum inhibitory concentrations (MIC) ranging from 10 ppm (for some Brachyspira hyodysenteriae strains) to 80 ppm (for various Salmonella enterica and Escherichia coli strains) were observed. Membrane integrity tests and Fourier transform infrared (FT-IR) spectroscopic analyses were performed to shed light on the effects caused on molecular structure and composition. Physical effects, with formation of pores and leakage of intracellular components, and chemical effects, which were dependent on the bacterial species, were evident on cellular envelopes. Whereas for S. enterica and E. coli, changes were focused on the carboxylic group of membrane fatty acids, for B. hyodysenteriae, the main effects were found in polysaccharides and carbohydrates of the cell wall.
Conclusions: The great antibacterial activity shown by BIOLL(+®) and its proposed dual physico-chemical mode of action, with species-specific cellular targets, show its attractiveness as an alternative to antibiotics.
Significance And Impact Of The Study: Antibiotic resistance is becoming a serious problem. Our study characterizes a novel antimicrobial extract, which could represent an alternative to antibiotics for treatment or prevention of bacterial infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.12216 | DOI Listing |
J Nat Prod
January 2025
Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway.
J Chem Inf Model
January 2025
Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.
Mol Biol Rep
January 2025
Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infection worldwide due to its antimicrobial resistance. Plant-derived essential oils (EOs) have undergone extensive observational and clinical research to explore their antimicrobial properties. The present study aimed to check mec A positive MRSA isolates using sequencing analysis, determination of chemical composition using gas chromatography-mass spectroscopy (GC-MS), antioxidant, and antimicrobial activity of Anethum graveolens and Piper betle EOs against the infectious agent MRSA.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!