AI Article Synopsis

  • The HPV-E6-E6AP complex leads to p53 degradation in infected cells, but c-Abl tyrosine kinase can protect p53 during stress.
  • This study shows that c-Abl interacts with and phosphorylates E6AP, impairing its ability to function as an E3 ligase.
  • The phosphorylation occurs at tyrosine 636, which regulates E6AP's activity and suggests a new way c-Abl protects p53 from degradation in HPV-infected cells.

Article Abstract

In human papillomavirus (HPV)-infected cells, the p53 tumor suppressor is tightly regulated by the HPV-E6-E6AP complex, which promotes it for proteasomal degradation. We previously demonstrated that c-Abl tyrosine kinase protects p53 from HPV-E6-E6AP complex-mediated ubiquitination and degradation under stress conditions. However, the underlying mechanism was not defined. In this study, we explored the possibility that c-Abl targets E6AP and thereby protects p53. We demonstrated that c-Abl interacts with and phosphorylates E6AP. We determined that the E3 ligase activity of E6AP is impaired in response to phosphorylation by c-Abl. We mapped the phosphorylation site to tyrosine 636 within the HECT catalytic domain of E6AP, and using substitution mutants, we showed that this residue dictates the E3 ligase activity of E6AP, in a substrate-specific manner. On the basis of the crystal structure of the HECT domain of E6AP, we propose a model in which tyrosine 636 plays a regulatory role in the oligomerization of E6AP, which is a process implicated in its E3 ubiquitin ligase activity. Our results suggest that c-Abl protects p53 from HPV-E6-E6AP complex-mediated degradation by phosphorylating E6AP and impairing its E3 ligase activity, thus providing a molecular explanation for the stress-induced protection of p53 in HPV-infected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi301710cDOI Listing

Publication Analysis

Top Keywords

ligase activity
20
protects p53
12
e6ap
9
phosphorylates e6ap
8
ubiquitin ligase
8
hpv-infected cells
8
demonstrated c-abl
8
p53 hpv-e6-e6ap
8
hpv-e6-e6ap complex-mediated
8
activity e6ap
8

Similar Publications

The diverse and dynamic population of microorganisms present in the gut microbiota may affect host health. There are evidences to support the role of gut microbiota as a key player in reproductive development. Unfortunately, the relationship between reproductive disorders caused by aging and gut microbiota remains largely unknown.

View Article and Find Full Text PDF

Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo.

J Med Chem

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China.

Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders.

View Article and Find Full Text PDF

Pathological roles of ubiquitination and deubiquitination systems in sepsis-induced myocardial dysfunction.

Biomol Biomed

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical school of Nantong University, Jiangsu, China.

Sepsis-induced myocardial dysfunction (SIMD) is a severe complication of sepsis, characterized by impaired cardiac function and high mortality rates. Despite significant advances in understanding sepsis pathophysiology, the molecular mechanisms underlying SIMD remain incompletely elucidated. Ubiquitination and deubiquitination, critical post-translational modifications (PTMs) regulating protein stability, localization, and activity, play pivotal roles in cellular processes, such as inflammation, apoptosis, mitochondrial function, and calcium handling.

View Article and Find Full Text PDF

The basal level of salicylic acid represses the PRT6 N-degron pathway to modulate root growth and stress response in rice.

Plant Commun

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.

Maintaining a stable basal level of salicylic acid (SA) is crucial for plant growth, development, and stress response, though basal levels of SA vary significantly among plant species. However, the molecular mechanisms by which basal SA regulates plant growth and stress response remain to be elucidated. In this study, we performed a genetic screen to identify suppressors of the root growth defect in Osaim1, a rice mutant deficient in basal SA biosynthesis.

View Article and Find Full Text PDF

Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!