Giant tunability of ferroelectric polarization in GdMn2O5.

Phys Rev Lett

Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.

Published: March 2013

Giant tunability of ferroelectric polarization (ΔP=5000  μC/m2) in the multiferroic GdMn2O5 with external magnetic fields is discovered. The detailed magnetic model from x-ray magnetic scattering results indicates that the Gd-Mn symmetric exchange striction plays a major role in the tunable ferroelectricity of GdMn2O5, which is in distinction from other compounds of the same family. Thus, the highly isotropic nature of Gd spins plays a key role in the giant magnetoelectric coupling in GdMn2O5. This finding provides a new handle in achieving enhanced magnetoelectric functionality.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.137203DOI Listing

Publication Analysis

Top Keywords

giant tunability
8
tunability ferroelectric
8
ferroelectric polarization
8
gdmn2o5
4
polarization gdmn2o5
4
gdmn2o5 giant
4
polarization Δp=5000  μc/m2
4
Δp=5000  μc/m2 multiferroic
4
multiferroic gdmn2o5
4
gdmn2o5 external
4

Similar Publications

Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO Epitaxial Thin Films.

Small

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy.

View Article and Find Full Text PDF

Giant Ultrabroadband Bulk Photovoltaic Effect Engendered by Two-Photon Absorption in α-InSe for Chiral Terahertz Wave Generation.

Adv Mater

December 2024

Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.

Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy.

View Article and Find Full Text PDF

Quasi-BICs enhanced second harmonic generation from WSe monolayer.

Nanophotonics

August 2024

College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.

Quasi-bound states in the continuum (quasi-BICs) offer unique advantages in enhancing nonlinear optical processes and advancing the development of active optical devices. Here, the tunable robust quasi-BICs resonances are experimentally achieved through the engineering of multiple-hole Si-metasurface. Notably, the quasi-BICs mode exhibits flat bands with minimal dispersion at a wide range of incident angles, as demonstrated by the angle-resolved spectroscopy measurements.

View Article and Find Full Text PDF

Intersubband transitions in semiconductor heterostructures offer a way to achieve large and designable nonlinearities with dynamic modulation of intersubband energies through the Stark effect. One promising approach for incorporating these nonlinearities into free space optics is a nonlinear polaritonic metasurface, which derives resonant coupling between intersubband nonlinearities and optical modes in nanocavities. Recent work has shown efficient frequency mixing at low pumping intensities, with the ability to electrically tune the phase, amplitude, and spectral peak of it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!