We report the low-temperature electronic and magnetic properties of the alkali metal-organic solvent intercalated iron selenide superconductor Li(C5H5N)0.2Fe2Se2 using muon-spin-spectroscopy measurements. The zero-field muon spin relaxation (μSR) results indicate that nearly half of the sample is magnetically ordered and spatially phase separated from the superconducting region. The transverse-field μSR results reveal that the superfluid density of Li(C5H5N)0.2Fe2Se2 is two dimensional in nature. The temperature dependence of the penetration depth λ(T) can be explained using a two-gap s-wave model. This implies that, despite the 2D nature of the superfluid density, the symmetry of the superconducting gap remains unaltered to the parent compound FeSe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.137003 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Typical path integral Monte Carlo approaches use the primitive approximation to compute the probability density for a given path. In this work, we develop the pair discrete variable representation (pair-DVR) approach to study molecular rotations. The pair propagator, which was initially introduced to study superfluidity in condensed helium, is naturally well-suited for systems interacting with a pairwise potential.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
J Chem Phys
December 2024
Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.
View Article and Find Full Text PDFCommun Phys
November 2024
PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland.
Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes 91025, France.
The collision of cesium atoms on the surface of helium nanodroplets (HNDs) containing 1000 atoms is described by the ZPAD-mPL approach, a zero-point averaged dynamics (ZPAD) method based on a He-He pseudopotential adjusted to better reproduce the total energy of He1000. Four types of collisional patterns were identified depending on the initial projectile speed v0 and impact parameter b. At the lowest speeds (v0 ≲ 250 m s-1), Cs atoms are softly captured by the HND surface, while at the highest ones (v0 ≳ 500-600 m s-1), Cs atoms can travel through the droplet and move away.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!