The irreversible damage at cracks during the fatigue of crystalline solids is well known. Here we report on in situ high-energy x-ray evidence of reversible fatigue behavior in a nanocrystalline NiFe alloy both in the plastic zone and around the crack tip. In the plastic zone, the deformation is fully recoverable as the crack propagates, and the plastic deformation invokes reversible interactions of dislocation and twinning in the nanograins. But around the crack tip lies a regime with reversible grain lattice reorientation promoted by a change of local stress state. These observations suggest unprecedented fatigue deformation mechanisms in nanostructured systems that are not addressed theoretically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.135501 | DOI Listing |
Mol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine;
Ischemia-reperfusion injuries are known to cause a range of retinal pathologies, including diabetic retinopathy, glaucoma, retinal vascular occlusions, and other vaso-occlusive conditions. This manuscript presents a method for inducing ischemia-reperfusion injury in a mouse model. The method utilized anterior chamber cannulation attached to a saline reservoir, generating hydrostatic pressure to raise the intraocular pressure to 90-100 mmHg.
View Article and Find Full Text PDFBioact Mater
April 2025
School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.
View Article and Find Full Text PDFBrain Spine
December 2024
Laboratory of Biomechanics and Medical Imaging, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
Background: Adults with spinal deformity (ASD) are known to have spinal malalignment, which can impact their quality of life and their autonomy in daily life activities. Among these tasks, ascending and descending stairs is a common activity of daily life that might be affected.
Research Question: What are the main kinematic alterations in ASD during stair ascent and descent?
Methods: 112 primary ASD patients and 34 controls filled HRQoL questionnaires and underwent biplanar X-from which spino-pelvic radiographic parameters were calculated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!