In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.130407DOI Listing

Publication Analysis

Top Keywords

epr steering
12
steering inequality
8
photon pairs
8
steering
5
violation continuous-variable
4
continuous-variable einstein-podolsky-rosen
4
einstein-podolsky-rosen steering
4
steering discrete
4
discrete measurements
4
measurements letter
4

Similar Publications

Two experiments were conducted to determine the potential for the essential oil blend Agolin Ruminant L (Agolin) to reduce enteric methane (CH4) emissions from beef cattle when delivered via drinking water. Experiment 1 evaluated aqueous solutions of Agolin (50 mg/L) and a nonprotein nitrogen and mineral solution (uPRO ORANGE [uPRO]; 1.7 mL/L) individually and in combination, where Agolin was added to concentrated uPRO at 3%, 4.

View Article and Find Full Text PDF

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally.

View Article and Find Full Text PDF

Activation of Einstein-Podolsky-Rosen steering sharing with unsharp nonlocal measurements.

Sci Rep

May 2024

College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.

Einstein-Podolsky-Rosen (EPR) steering is commonly shared among multiple observers by utilizing unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not encompass all nonlocal measurement-based cases. In this work, a method for finding beneficial local measurement settings has been expanded to include nonlocal measurement cases.

View Article and Find Full Text PDF

Einstein-Podolsky-Rosen (EPR) steering, an important resource in quantum information, describes the ability of one party to influence the state of another party through local measurements. It differs from Bell nonlocality and entanglement due to its asymmetric property. EPR steering swapping allows two spatially independent parties to present EPR steering without direct interaction.

View Article and Find Full Text PDF

Entanglement potentials are a promising way to quantify the nonclassicality of single-mode states. They are defined by the amount of entanglement (expressed by, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!