Transmission Electron Microscopy is used as a quantitative method to measure the shapes, sizes and volumes of gold nanoparticles created at a polymeric surface by three different in situ synthesis methods. The atomic number contrast (Z-contrast) imaging technique reveals nanoparticles which are formed on the surface of the polymer. However, with certain reducing agents, the gold nanoparticles are additionally found up to 20 nm below the polymer surface. In addition, plan-view high-angle annular dark-field scanning transmission electron microscopy images were statistically analyzed on one sample to measure the volume, height and effective diameter of the gold nanoparticles and their size distributions. Depth analysis from high-angle annular dark-field scanning transmission electron microscopy micrographs also gives information on the dominant shape of the nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.12039DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
16
transmission electron
12
electron microscopy
12
nanoparticles created
8
polymeric surface
8
high-angle annular
8
annular dark-field
8
dark-field scanning
8
scanning transmission
8
nanoparticles
6

Similar Publications

Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.

View Article and Find Full Text PDF

This paper explores the development of an opto-thermal-electrical model for plasmonic Schottky solar cells (PSSCs) using a comprehensive multiphysics approach. We simulated the optical properties, power conversion efficiencies, and energy yield of PSSCs with varying nanoparticle (NP) configurations and sizes. Our spectral analysis focused on the absorption characteristics of these solar cells, examining systems sized 3 × 3, 5 × 5, and 7  × 7, with NP radii ranging from 10 to 150 nm.

View Article and Find Full Text PDF

Cancer cells sense and respond to the extracellular environment, with differences in nanoscale ligand spacing affecting their behavior. Emerging reports show that stretch/ultrasound-mediated mechanical forces promote apoptosis (mechanoptosis) by increasing myosin contractility. Since myosin contractility is critical for nanoscale-ligand spacing-regulated cell behavior, we study the effect of ligand spacing on mechanoptosis.

View Article and Find Full Text PDF

Ferrous Tungstate Nanomaterials with Excellent Enzyme-Mimicking Activity to Enhance Lateral Flow Immunoassay Sensitivity.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China.

Lateral flow immunochromatography (LFIA) with gold nanoparticles (AuNPs) is widely used in the biomedical field as a rapid and simple in vitro detection technique. However, the conventional AuNP-LFIA has limitations in sensitivity and detection range. In this study, nonprecious metal iron-based bimetallic FeWO nanomaterials with convenient and excellent enzyme-mimetic catalytic activities were synthesized by a one-pot hydrothermal method.

View Article and Find Full Text PDF

Type-2-diabetes is a metabolic disorder where misfolding and oligomerization of islet amyloid polypeptide (IAPP) around islet-β cells oligomerizes and participates in the pathology. The oligomeric stage is toxic but transitory and leads to the formation of mature amyloid fibrils. The pathological specifics of mature amyloid fibrils are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!