Anal cancer accounts for only 1.5% of gastrointestinal malignancies but this disease has shown a steady increase in incidence particularly in HIV positive males. The understanding of pathophysiology and treatment of anal cancer has changed radically over last thirty years. Risk factors have been identified and organ preservation by chemoradiotherapy has become a standard. This article aims to review the clinical presentation, diagnostic evaluation, and treatment options for anal cancer in the light of current literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616949 | PMC |
http://dx.doi.org/10.12816/0006000 | DOI Listing |
Phytochem Anal
December 2024
Institute of Oncology, the First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Objectives: We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).
Methods: Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database.
Anal Chem
December 2024
Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.
View Article and Find Full Text PDFAnal Chem
December 2024
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.
Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
Lung cancer continues to be a major contributor to cancer-related deaths globally. Recent advances in immunotherapy have introduced promising treatments targeting T cell functionality. Central to the efficacy of these therapies is the role of T cells, which are often rendered dysfunctional due to continuous antigenic stimulation in the tumor microenvironment-a condition referred to as T cell exhaustion.
View Article and Find Full Text PDFAnal Chem
December 2024
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
Surface-enhanced Raman spectroscopy (SERS) provides a rapid and nondestructive method for biological plasma analysis, offering unparalleled sensitivity and specificity. However, most current studies predominantly employ the drop-cast method, where liquid samples are dried on the SERS substrate for spectral recording. While effective, this method is both time-consuming and inconsistent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!