A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity. | LitMetric

Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity.

J Hered

School of Marine and Tropical Biology, Molecular Ecology and Evolution Laboratory, James Cook University, Townsville, Qld 4811, Australia.

Published: November 2013

Much progress has been made toward understanding marine metapopulation dynamics, largely because of multilocus microsatellite surveys able to connect related individuals within the metapopulation. However, most studies are focused on small spatial scales, tens of kilometers, while demographic exchange at larger spatial scales remains poorly documented. Additionally, many small-scale demographic studies conflict with broad-scale phylogeographic patterns concerning levels of marine population connectivity, highlighting a need for data on more intermediate scales. Here, we investigated demographic recruitment processes of a commercially important coral reef fish, the bluespine unicornfish (Naso unicornis) using a suite of mitochondrial DNA (mtDNA) and microsatellite markers. Sampling for this study ranged across the southern Marianas Islands, a linear distance of 250 km and included 386 newly settled postlarval recruits. In contrast with other studies, we report that cohorts of recruits were genetically homogeneous in space and time, with no evidence of temporally stochastic sweepstakes reproduction. The genetic diversity of recruits was high and commensurate with that of the adult population. In addition, there is substantial evidence that 2 recruits, separated by 250 km, were full siblings. This is the largest direct observation of dispersal to date for a coral reef fish. All indications suggest that subpopulations of N. unicornis experience high levels of demographic migrant exchange and metapopulation mixing on a spatial scale of hundreds of kilometers, consistent with high levels of broad-scale genetic connectivity previously reported in this species.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/est021DOI Listing

Publication Analysis

Top Keywords

coral reef
12
reef fish
12
migrant exchange
8
marine population
8
population connectivity
8
spatial scales
8
high levels
8
observations migrant
4
exchange mixing
4
mixing coral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!