AI Article Synopsis

  • The study examines oxidative DNA damage and its role in aging by analyzing the NER-deficient xpa-1 mutant of Caenorhabditis elegans.
  • Both proteomic and transcriptomic analyses reveal activation of oxidative stress responses and changes in energy levels related to reactive oxygen species and ATP.
  • It is concluded that lesion-detection enzymes NTH-1, XPC-1, and DDB-1 are crucial for initiating genomic stress signals that lead to significant changes in gene expression in the xpa-1 mutant.

Article Abstract

Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664812PMC
http://dx.doi.org/10.1093/nar/gkt225DOI Listing

Publication Analysis

Top Keywords

xpa-1 mutant
16
excision repair
12
nucleotide excision
8
activation oxidative
8
oxidative stress
8
stress responses
8
lesion-detection enzymes
8
xpc-1 ddb-1
8
transcriptomic reprogramming
8
reprogramming
5

Similar Publications

Interstrand cross-links (ICLs) are adducts of covalently linked nucleotides in opposing DNA strands that obstruct replication and prime cells for malignant transformation or premature cell death. ICLs may be caused by alkylating agents or ultraviolet (UV) irradiation. These toxic lesions are removed by diverse repair mechanisms such as the Fanconi anemia (FA) pathway, nucleotide excision repair (NER), translesion synthesis (TLS), and homologous recombination (HR).

View Article and Find Full Text PDF

Systematic analysis of DNA crosslink repair pathways during development and aging in Caenorhabditis elegans.

Nucleic Acids Res

September 2017

Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.

DNA interstrand crosslinks (ICLs) are generated by endogenous sources and chemotherapeutics, and pose a threat to genome stability and cell survival. Using Caenorhabditis elegans mutants, we identify DNA repair factors that protect against the genotoxicity of ICLs generated by trioxsalen/ultraviolet A (TMP/UVA) during development and aging. Mutations in nucleotide excision repair (NER) components (e.

View Article and Find Full Text PDF

This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C.

View Article and Find Full Text PDF

Oxidative stress promotes human aging and contributes to common neurodegenerative diseases. Endogenous DNA damage induced by oxidative stress is believed to be an important promoter of neurodegenerative diseases. Although a large amount of evidence correlates a reduced DNA repair capacity with aging and neurodegenerative disease, there is little direct evidence of causality.

View Article and Find Full Text PDF

An increase of oxidised nucleotides activates DNA damage checkpoint pathway that regulates post-embryonic development in Caenorhabditis elegans.

Mutagenesis

March 2014

Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.

8-Oxo-dGTP, an oxidised form of dGTP generated in the nucleotide pool, can be incorporated opposite adenine or cytosine in template DNA, which can in turn induce mutations. In this study, we identified a novel MutT homolog (NDX-2) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. In addition, we found that NDX-1, NDX-2 and NDX-4 proteins have 8-oxo-GTPase or 8-oxo-GDPase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!